io.cpp 13.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
L
liuruilong 已提交
17

L
liuruilong 已提交
18
#include "common/log.h"
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20 21
#include "framework/scope.h"
#include "framework/tensor.h"
L
liuruilong 已提交
22 23 24 25 26 27
#include "framework/operator.h"
#include "framework/lod_tensor.h"
#include "framework/framework.pb-c.h"
#include "framework/program/var_desc.h"
#include "framework/program/program_desc.h"
#include "framework/program/program-optimize/program_optimize.h"
W
wangliu 已提交
28 29 30 31

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
32 33
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
34 35
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
36 37 38 39 40 41
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
42 43
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
44 45
  fclose(file);
  return data;
W
wangliu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
void Loader<Dtype, P>::LoadVar(framework::Variable *variable,
                               const framework::VarDesc &var_desc,
                               const std::string &file_path) {
  auto tensor = variable->GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
76
  char *data = Get_binary_data(file_path);
W
wangliu 已提交
77 78

  // 1. version
L
liuruilong 已提交
79 80
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
81 82

  // 2 Lod information
L
liuruilong 已提交
83 84 85
  uint32_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);

W
wangliu 已提交
86 87 88
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
89 90 91
    uint32_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);

W
wangliu 已提交
92
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
93 94 95

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
W
wangliu 已提交
96 97 98 99 100
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
101 102 103
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);

W
wangliu 已提交
104
  // 4. tensor desc
L
liuruilong 已提交
105 106 107
  uint32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
108
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
109 110 111 112

  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
W
wangliu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  const framework::TensorDesc &desc = var_desc.Tensor_desc();

  PaddleMobile__Framework__Proto__VarType__TensorDesc *tensor_desc = NULL;

  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
151 152 153 154 155
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }

  delete data;
W
wangliu 已提交
156 157 158 159
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
160
    const std::string &dirname, bool optimize) {
W
wangliu 已提交
161 162 163 164 165 166 167 168 169
  std::string model_filename = dirname + "/__model__";
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
      NULL, read_size, buf);
W
wangliu 已提交
170
  //
W
wangliu 已提交
171
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
172
  //
W
wangliu 已提交
173
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
174
  //
W
wangliu 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
  std::shared_ptr<framework::ProgramDesc> originProgramDesc =
      std::make_shared<framework::ProgramDesc>(c_program);

  framework::Program<Dtype, P> program;
  program.model_path = dirname;
  program.originProgram = originProgramDesc;

  std::shared_ptr<framework::Scope> scope =
      std::make_shared<framework::Scope>();
  program.scope = scope;
  originProgramDesc->Block(0);

  for (const auto &block : originProgramDesc->Blocks()) {
    for (int i = 0; i < block->Vars().size(); ++i) {
      std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
      //      DLOG << "var name-- " << var_desc->Name();
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
213 214
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
215 216
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
217 218
    program.optimizeProgram =
        program_optimize.FushionOptimize(originProgramDesc);
L
liuruilong 已提交
219
  }
L
liuruilong 已提交
220 221 222 223 224 225
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
226 227 228 229 230 231 232 233 234
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
235 236
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
237
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
252
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
  InitMemory();
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
                                    framework::LoDTensor *tensor,
                                    const std::string &file_path) {
L
liuruilong 已提交
268 269
  char *origin_data = Get_binary_data(file_path);
  char *data = origin_data;
W
wangliu 已提交
270 271

  // 1. version
L
liuruilong 已提交
272 273 274
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
  DLOG << "version: " << version;
W
wangliu 已提交
275 276

  // 2 Lod information
L
liuruilong 已提交
277 278 279 280
  uint64_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);
  DLOG << "lod_level: " << lod_level;

W
wangliu 已提交
281 282 283
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
284 285 286 287
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;

W
wangliu 已提交
288
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
289 290 291 292 293 294 295

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
296 297 298 299 300 301 302
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
303 304 305
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
  DLOG << "tensor_version: " << tensor_version;
W
wangliu 已提交
306 307

  // 4. tensor desc
L
liuruilong 已提交
308 309 310 311
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);
  DLOG << "tensor desc size: " << size;

W
wangliu 已提交
312
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
313 314 315 316
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
L
liuruilong 已提交
334
      DLOG << " type size: " << type_size;
W
wangliu 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
353 354 355 356 357
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }

  delete origin_data;
W
wangliu 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
        LoadMemory(*var_desc, tensor,
                   program_.model_path + "/" + var_desc->Name());
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

template <typename Dtype, Precision P>
W
wangliu 已提交
384 385
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
386 387 388 389 390 391
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
392
      to_predict_program_->Block(0);
W
wangliu 已提交
393 394 395 396
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
    op->Run();
  }
W
wangliu 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
411 412 413
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
414
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
415 416
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
417 418 419 420 421 422 423 424
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
425 426 427 428 429
}

template class Executor<CPU, Precision::FP32>;

}  // namespace paddle_mobile