io.cpp 13.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
D
dolphin8 已提交
17
#define PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
18
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
19
#include <algorithm>
D
dolphin8 已提交
20
#include <ctime>
D
dolphin8 已提交
21
#include <unordered_map>
D
dolphin8 已提交
22
#endif
L
liuruilong 已提交
23 24

#include "common/enforce.h"
L
liuruilong 已提交
25
#include "common/log.h"
L
liuruilong 已提交
26
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
27 28
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
29
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
30 31 32 33
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
34 35 36 37

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
38 39
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
40 41
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
42 43 44 45 46 47
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
48 49
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
50 51
  fclose(file);
  return data;
W
wangliu 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
79
    const std::string &dirname, bool optimize, bool can_add_split) {
L
liuruilong 已提交
80 81
  auto program =
      this->LoadProgram(dirname + "/__model__", optimize, can_add_split);
L
liuruilong 已提交
82 83 84 85 86
  program.model_path = dirname;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
87 88 89
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &model_path, const std::string &para_path,
    bool optimize) {
L
liuruilong 已提交
90 91 92 93 94 95 96
  auto program = this->LoadProgram(model_path, optimize);
  program.para_path = para_path;
  program.is_commbine = true;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
97
const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
L
liuruilong 已提交
98
    const std::string &model_path, bool optimize, bool can_add_split) {
L
liuruilong 已提交
99
  std::string model_filename = model_path;
W
wangliu 已提交
100 101 102 103 104 105 106
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
L
liuruilong 已提交
107
      NULL, read_size, buf);
W
wangliu 已提交
108
  //
W
wangliu 已提交
109
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
110
  //
W
wangliu 已提交
111
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
112
  //
113
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
114 115 116 117

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

118
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
119 120 121
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
122
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
145 146
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
147 148
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
149
    program.optimizeProgram =
L
liuruilong 已提交
150
        program_optimize.FusionOptimize(originProgramDesc, can_add_split);
L
liuruilong 已提交
151
  }
L
liuruilong 已提交
152 153 154 155 156 157
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
158 159 160 161 162
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;
L
liuruilong 已提交
163 164
template class Loader<FPGA, Precision::FP32>;
template class Loader<GPU_MALI, Precision::FP32>;
W
wangliu 已提交
165 166 167 168

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
169 170
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
171
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
186
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
187 188 189 190 191 192 193 194
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
L
liuruilong 已提交
195 196 197 198 199
  if (program_.is_commbine) {
    InitCombineMemory();
  } else {
    InitMemory();
  }
W
wangliu 已提交
200 201 202 203
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
L
liuruilong 已提交
204
                                    framework::LoDTensor *tensor, char *&data) {
W
wangliu 已提交
205
  // 1. version
L
liuruilong 已提交
206 207
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
208 209

  // 2 Lod information
L
liuruilong 已提交
210 211 212 213
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, data, sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
L
liuruilong 已提交
214 215
  data += sizeof(uint64_t);

W
wangliu 已提交
216 217 218
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
219 220 221
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
222
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
223 224 225 226 227 228 229

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
230 231 232 233 234 235 236
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
237 238
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
239 240

  // 4. tensor desc
L
liuruilong 已提交
241 242 243
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
244
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
245 246 247 248
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
284 285 286
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }
L
liuruilong 已提交
287
  data += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
288 289 290 291 292 293 294 295 296 297 298 299
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
300

L
liuruilong 已提交
301 302
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
303 304
        char *data = origin_data;
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
305
        delete origin_data;
W
wangliu 已提交
306 307 308 309 310 311 312 313 314 315 316
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
317
template <typename Dtype, Precision P>
L
liuruilong 已提交
318
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
319
  LOG(kLOG_INFO) << " begin init combine memory";
L
liuruilong 已提交
320
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
321
  char *data = origin_data;
L
liuruilong 已提交
322 323 324 325 326 327 328 329
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
330
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
331 332 333 334 335 336 337 338 339
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
340
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
341 342
}

W
wangliu 已提交
343
template <typename Dtype, Precision P>
W
wangliu 已提交
344 345
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
346 347 348 349 350 351
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
352
      to_predict_program_->Block(0);
D
dolphin8 已提交
353
#ifdef PADDLE_MOBILE_PROFILE
354
  std::unordered_map<std::string, clock_t> _profile;
D
dolphin8 已提交
355
#endif
W
wangliu 已提交
356 357
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
D
dolphin8 已提交
358
#ifdef PADDLE_MOBILE_PROFILE
359
    _profile[op->Type()] -= clock();
D
dolphin8 已提交
360
#endif
W
wangliu 已提交
361
    op->Run();
D
dolphin8 已提交
362
#ifdef PADDLE_MOBILE_PROFILE
363
    _profile[op->Type()] += clock();
D
dolphin8 已提交
364
#endif
W
wangliu 已提交
365
  }
D
dolphin8 已提交
366 367
#ifdef PADDLE_MOBILE_PROFILE
  {
D
dolphin8 已提交
368
    std::cout << "====================[ profile ]======================\n";
369 370
    using prof_t = std::pair<std::string, clock_t>;
    std::vector<prof_t> _tprofile(_profile.begin(), _profile.end());
371
    clock_t _ptotal = 0;
D
dolphin8 已提交
372
    for (auto const &p : _tprofile) {
D
dolphin8 已提交
373 374
      _ptotal += p.second;
    }
375 376 377 378
    auto compf = [](const prof_t &a, const prof_t &b) {
      return a.second > b.second;
    };
    std::sort(_tprofile.begin(), _tprofile.end(), compf);
D
dolphin8 已提交
379 380
    _tprofile.push_back(std::make_pair("total", _ptotal));
    for (auto const &p : _tprofile) {
381 382
      printf("%-16s\t%-10.0f\t%-.4f\n", p.first.c_str(), (float)p.second,
             (float)p.second / _ptotal * 100.0);
D
dolphin8 已提交
383
    }
D
dolphin8 已提交
384
    std::cout << "====================[---------]======================\n";
D
dolphin8 已提交
385 386
  }
#endif
W
wangliu 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
401 402 403
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
404
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
405 406
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
407 408 409 410 411 412 413 414
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
415 416 417
}

template class Executor<CPU, Precision::FP32>;
L
liuruilong 已提交
418 419
template class Executor<FPGA, Precision::FP32>;
template class Executor<GPU_MALI, Precision::FP32>;
W
wangliu 已提交
420 421

}  // namespace paddle_mobile