io.cpp 12.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
L
liuruilong 已提交
17 18

#include "common/enforce.h"
L
liuruilong 已提交
19
#include "common/log.h"
L
liuruilong 已提交
20
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
21 22
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
23
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
24 25 26 27
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
28 29 30 31

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
32 33
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
34 35
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
36 37 38 39 40 41
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
42 43
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
44 45
  fclose(file);
  return data;
W
wangliu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
73
    const std::string &dirname, bool optimize) {
L
liuruilong 已提交
74 75 76 77 78 79
  auto program = this->LoadProgram(dirname + "/__model__", optimize);
  program.model_path = dirname;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
80 81 82
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &model_path, const std::string &para_path,
    bool optimize) {
L
liuruilong 已提交
83 84 85 86 87 88 89
  auto program = this->LoadProgram(model_path, optimize);
  program.para_path = para_path;
  program.is_commbine = true;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
90 91
const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
    const std::string &model_path, bool optimize) {
L
liuruilong 已提交
92
  std::string model_filename = model_path;
W
wangliu 已提交
93 94 95 96 97 98 99
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
L
liuruilong 已提交
100
      NULL, read_size, buf);
W
wangliu 已提交
101
  //
W
wangliu 已提交
102
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
103
  //
W
wangliu 已提交
104
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
105
  //
106
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
107 108 109 110

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

111
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
112 113 114
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
115
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
138 139
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
140 141
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
142
    program.optimizeProgram =
L
liuruilong 已提交
143
        program_optimize.FushionOptimize(originProgramDesc);
L
liuruilong 已提交
144
  }
L
liuruilong 已提交
145 146 147 148 149 150
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
151 152 153 154 155 156 157 158 159
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
160 161
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
162
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
177
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
178 179 180 181 182 183 184 185
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
L
liuruilong 已提交
186 187 188 189 190
  if (program_.is_commbine) {
    InitCombineMemory();
  } else {
    InitMemory();
  }
W
wangliu 已提交
191 192 193 194
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
L
liuruilong 已提交
195
                                    framework::LoDTensor *tensor, char *&data) {
W
wangliu 已提交
196
  // 1. version
L
liuruilong 已提交
197 198
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
199 200

  // 2 Lod information
L
liuruilong 已提交
201 202 203
  uint64_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);

W
wangliu 已提交
204 205 206
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
207 208 209
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
210
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
211 212 213 214 215 216 217

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
218 219 220 221 222 223 224
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
225 226
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
227 228

  // 4. tensor desc
L
liuruilong 已提交
229 230 231
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
232
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
233 234 235 236
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
272 273 274
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }
L
liuruilong 已提交
275
  data += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
276 277 278 279 280 281 282 283 284 285 286 287
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
288

L
liuruilong 已提交
289 290
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
291 292
        char *data = origin_data;
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
293
        delete origin_data;
W
wangliu 已提交
294 295 296 297 298 299 300 301 302 303 304
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
305
template <typename Dtype, Precision P>
L
liuruilong 已提交
306
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
307
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
308
  char *data = origin_data;
L
liuruilong 已提交
309 310 311 312 313 314 315 316
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
317
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
318 319 320 321 322 323 324 325 326 327 328
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
}

W
wangliu 已提交
329
template <typename Dtype, Precision P>
W
wangliu 已提交
330 331
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
332 333 334 335 336 337
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
338
      to_predict_program_->Block(0);
W
wangliu 已提交
339 340 341 342
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
    op->Run();
  }
W
wangliu 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
357 358 359
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
360
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
361 362
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
363 364 365 366 367 368 369 370
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
371 372 373 374 375
}

template class Executor<CPU, Precision::FP32>;

}  // namespace paddle_mobile