math_function.cpp 6.1 KB
Newer Older
Z
zhaojiaying01 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhaojiaying01 已提交
15
#include "operators/math/math_function.h"
16
#include <string>
H
hjchen2 已提交
17
#include "common/enforce.h"
L
lijiancheng0614 已提交
18 19
#include "framework/data_type.h"
#include "framework/tensor.h"
Z
zhaojiaying01 已提交
20
#include "operators/math/gemm.h"
H
backup  
hjchen2 已提交
21
#include "operators/math/gemm/cblas.h"
朔-望's avatar
朔-望 已提交
22 23

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
24 25 26
namespace operators {
namespace math {

L
lijiancheng0614 已提交
27 28 29 30 31 32 33 34 35 36 37 38
struct TensorSetConstant {
  TensorSetConstant(framework::Tensor *tensor, float value)
      : tensor_(tensor), value_(value) {}
  template <typename T>
  void apply() const {
    auto *begin = tensor_->mutable_data<T>();
    std::fill(begin, begin + tensor_->numel(), static_cast<T>(value_));
  }
  framework::Tensor *tensor_;
  float value_;
};

H
hjchen2 已提交
39
void SetConstant(framework::Tensor *tensor, float value) {
L
lijiancheng0614 已提交
40 41 42 43
  framework::VisitDataType(framework::ToDataType(tensor->type()),
                           TensorSetConstant(tensor, value));
}

朔-望's avatar
朔-望 已提交
44
template <>
H
hjchen2 已提交
45
void MatMul<float, float>(const framework::Tensor &matrix_a, bool trans_a,
46 47 48
                          const framework::Tensor &matrix_b, bool trans_b,
                          float alpha, framework::Tensor *matrix_out,
                          float beta, bool relu, float *bias) {
49 50 51
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
52 53
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
H
hjchen2 已提交
54
      "The input and output of MatMul be matrix");
55 56 57

  int M = dim_out[0];
  int N = dim_out[1];
58
  int K = (!trans_a) ? dim_a[1] : dim_a[0];
H
backup  
hjchen2 已提交
59

60
  Gemm gemm;
61
  if (trans_a) {
62
    framework::Tensor matrix_trans;
63 64 65 66
    int numel = matrix_a.numel();
    int m = matrix_a.dims()[0];
    int n = matrix_a.dims()[1];
    float *tmp = (float *)(matrix_a.data<float>());  // NOLINT
67
    float *a = matrix_trans.mutable_data<float>(matrix_a.dims());
68 69 70 71 72 73
    int index = 0;
    for (int j = 0; j < n; j++) {
      for (int i = 0; i < m; i++) {
        a[index++] = tmp[i * n + j];
      }
    }
H
hjchen2 已提交
74 75
    cblas_sgemm(false, false, M, N, K, alpha, a, K, matrix_b.data<float>(), N,
                beta, matrix_out->data<float>(), N);
76
  } else {
H
hjchen2 已提交
77 78
    cblas_sgemm(false, false, M, N, K, alpha, matrix_a.data<float>(), K,
                matrix_b.data<float>(), N, beta, matrix_out->data<float>(), N);
79
  }
80
}
朔-望's avatar
朔-望 已提交
81

H
hjchen2 已提交
82 83 84 85 86
void MatMulWithBn(const framework::Tensor &matrix_a, bool trans_a,
                  const framework::Tensor &matrix_b, bool trans_b, float alpha,
                  framework::Tensor *matrix_out, float beta, bool relu,
                  framework::Tensor *new_scale, framework::Tensor *new_bias,
                  int group, float *bias) {
87
  Gemm gemm;
88 89 90
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
91 92
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
H
hjchen2 已提交
93
      "The input and output of MatMul be matrix");
94 95 96

  int M = dim_out[0];
  int N = dim_out[1];
97 98
  int K = (!trans_a) ? dim_a[1] : dim_a[0];

99
#ifdef _OPENMP
100 101 102 103
  gemm.SgemmWithBn_omp(
      M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
      beta, matrix_out->data<float>(), N, relu,
      new_scale->data<float>() + group, new_bias->data<float>() + group, bias);
104
#else
105 106 107 108
  gemm.SgemmWithBn(M, N, K, alpha, matrix_a.data<float>(), K,
                   matrix_b.data<float>(), N, beta, matrix_out->data<float>(),
                   N, relu, new_scale->data<float>() + group,
                   new_bias->data<float>() + group, bias);
109 110
#endif
}
H
hjchen2 已提交
111
void MatMulWithPRelu(const framework::Tensor &matrix_a, bool trans_a,
112 113 114
                     const framework::Tensor &matrix_b, bool trans_b,
                     framework::Tensor *matrix_out, float *p, std::string mode,
                     float *bias, float *bias1) {
115
  Gemm gemm;
116 117 118
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
119 120
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
H
hjchen2 已提交
121
      "The input and output of MatMul be matrix");
122 123 124 125 126 127

  int M = dim_out[0];
  int N = dim_out[1];
  int K = (!trans_a) ? dim_a[1] : dim_a[0];

#ifdef _OPENMP
128 129 130
  gemm.SgemmWithPRelu_omp(M, N, K, matrix_a.data<float>(), K,
                          matrix_b.data<float>(), N, matrix_out->data<float>(),
                          N, p, mode, bias, bias1);
131
#else
132 133 134
  gemm.SgemmWithPRelu(M, N, K, matrix_a.data<float>(), K,
                      matrix_b.data<float>(), N, matrix_out->data<float>(), N,
                      p, mode, bias, bias1);
135 136
#endif
}
朔-望's avatar
朔-望 已提交
137

xiebaiyuan's avatar
xiebaiyuan 已提交
138 139 140 141
template <typename T>
struct ClearTensor<CPU, T> {
  void operator()(framework::Tensor *tensor) {
    auto size = tensor->numel();
Z
Zhen Wang 已提交
142
    auto *tensor_data = tensor->data<T>();
143
    memset((void *)tensor_data, 0, sizeof(T) * size);  // NOLINT
xiebaiyuan's avatar
xiebaiyuan 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157
  }
};

template <typename T>
struct RowwiseAdd<CPU, T> {
  void operator()(const framework::Tensor &input,
                  const framework::Tensor &vector, framework::Tensor *output) {
    auto in_dims = input.dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_MOBILE_ENFORCE((vector.numel() == size),
                          "vector.numel() must be equal to size.");
    PADDLE_MOBILE_ENFORCE((output->dims() == in_dims),
                          "output->dims() must be equal to in_dims.");

Z
Zhen Wang 已提交
158 159 160
    auto *input_data = input.data<T>();
    auto *out_data = output->data<T>();
    auto *vec_data = vector.data<T>();
xiebaiyuan's avatar
xiebaiyuan 已提交
161 162 163 164 165 166 167 168 169 170 171
    for (int64_t i = 0; i < in_dims[0]; ++i) {
      for (int64_t j = 0; j < size; ++j) {
        out_data[i * size + j] = input_data[i * size + j] + vec_data[j];
      }
    }
  }
};

template struct RowwiseAdd<CPU, float>;
template struct ClearTensor<CPU, float>;

朔-望's avatar
朔-望 已提交
172 173 174
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile