math_function.cpp 6.4 KB
Newer Older
Z
zhaojiaying01 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhaojiaying01 已提交
15
#include "operators/math/math_function.h"
16
#include <string>
H
hjchen2 已提交
17
#include "common/enforce.h"
L
lijiancheng0614 已提交
18 19
#include "framework/data_type.h"
#include "framework/tensor.h"
Z
zhaojiaying01 已提交
20
#include "operators/math/gemm.h"
朔-望's avatar
朔-望 已提交
21 22

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
23 24 25
namespace operators {
namespace math {

L
lijiancheng0614 已提交
26 27 28 29 30 31 32 33 34 35 36 37
struct TensorSetConstant {
  TensorSetConstant(framework::Tensor *tensor, float value)
      : tensor_(tensor), value_(value) {}
  template <typename T>
  void apply() const {
    auto *begin = tensor_->mutable_data<T>();
    std::fill(begin, begin + tensor_->numel(), static_cast<T>(value_));
  }
  framework::Tensor *tensor_;
  float value_;
};

H
hjchen2 已提交
38
void SetConstant(framework::Tensor *tensor, float value) {
L
lijiancheng0614 已提交
39 40 41 42
  framework::VisitDataType(framework::ToDataType(tensor->type()),
                           TensorSetConstant(tensor, value));
}

朔-望's avatar
朔-望 已提交
43
template <>
H
hjchen2 已提交
44
void MatMul<float, float>(const framework::Tensor &matrix_a, bool trans_a,
45 46 47
                          const framework::Tensor &matrix_b, bool trans_b,
                          float alpha, framework::Tensor *matrix_out,
                          float beta, bool relu, float *bias) {
48 49 50
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
51 52
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
H
hjchen2 已提交
53
      "The input and output of MatMul be matrix");
54 55 56

  int M = dim_out[0];
  int N = dim_out[1];
57
  int K = (!trans_a) ? dim_a[1] : dim_a[0];
58
  Gemm gemm;
59
  if (trans_a) {
60
    framework::Tensor matrix_trans;
61 62 63 64
    int numel = matrix_a.numel();
    int m = matrix_a.dims()[0];
    int n = matrix_a.dims()[1];
    float *tmp = (float *)(matrix_a.data<float>());  // NOLINT
65
    float *a = matrix_trans.mutable_data<float>(matrix_a.dims());
66 67 68 69 70 71
    int index = 0;
    for (int j = 0; j < n; j++) {
      for (int i = 0; i < m; i++) {
        a[index++] = tmp[i * n + j];
      }
    }
72

73
#ifdef _OPENMP
74 75
    gemm.Sgemm_omp(M, N, K, alpha, a, K, matrix_b.data<float>(), N, beta,
                   matrix_out->data<float>(), N, relu, bias);
76
#else
77 78
    gemm.Sgemm(M, N, K, alpha, a, K, matrix_b.data<float>(), N, beta,
               matrix_out->data<float>(), N, relu, bias);
79 80
#endif
  } else {
81
#ifdef _OPENMP
82 83 84
    gemm.Sgemm_omp(M, N, K, alpha, matrix_a.data<float>(), K,
                   matrix_b.data<float>(), N, beta, matrix_out->data<float>(),
                   N, relu, bias);
85
#else
86 87 88
    gemm.Sgemm(M, N, K, alpha, matrix_a.data<float>(), K,
               matrix_b.data<float>(), N, beta, matrix_out->data<float>(), N,
               relu, bias);
89
#endif
90
  }
91
}
朔-望's avatar
朔-望 已提交
92

H
hjchen2 已提交
93 94 95 96 97
void MatMulWithBn(const framework::Tensor &matrix_a, bool trans_a,
                  const framework::Tensor &matrix_b, bool trans_b, float alpha,
                  framework::Tensor *matrix_out, float beta, bool relu,
                  framework::Tensor *new_scale, framework::Tensor *new_bias,
                  int group, float *bias) {
98
  Gemm gemm;
99 100 101
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
102 103
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
H
hjchen2 已提交
104
      "The input and output of MatMul be matrix");
105 106 107

  int M = dim_out[0];
  int N = dim_out[1];
108 109
  int K = (!trans_a) ? dim_a[1] : dim_a[0];

110
#ifdef _OPENMP
111 112 113 114
  gemm.SgemmWithBn_omp(
      M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
      beta, matrix_out->data<float>(), N, relu,
      new_scale->data<float>() + group, new_bias->data<float>() + group, bias);
115
#else
116 117 118 119
  gemm.SgemmWithBn(M, N, K, alpha, matrix_a.data<float>(), K,
                   matrix_b.data<float>(), N, beta, matrix_out->data<float>(),
                   N, relu, new_scale->data<float>() + group,
                   new_bias->data<float>() + group, bias);
120 121
#endif
}
H
hjchen2 已提交
122
void MatMulWithPRelu(const framework::Tensor &matrix_a, bool trans_a,
123 124 125
                     const framework::Tensor &matrix_b, bool trans_b,
                     framework::Tensor *matrix_out, float *p, std::string mode,
                     float *bias, float *bias1) {
126
  Gemm gemm;
127 128 129
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
130 131
  PADDLE_MOBILE_ENFORCE(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
H
hjchen2 已提交
132
      "The input and output of MatMul be matrix");
133 134 135 136 137 138

  int M = dim_out[0];
  int N = dim_out[1];
  int K = (!trans_a) ? dim_a[1] : dim_a[0];

#ifdef _OPENMP
139 140 141
  gemm.SgemmWithPRelu_omp(M, N, K, matrix_a.data<float>(), K,
                          matrix_b.data<float>(), N, matrix_out->data<float>(),
                          N, p, mode, bias, bias1);
142
#else
143 144 145
  gemm.SgemmWithPRelu(M, N, K, matrix_a.data<float>(), K,
                      matrix_b.data<float>(), N, matrix_out->data<float>(), N,
                      p, mode, bias, bias1);
146 147
#endif
}
朔-望's avatar
朔-望 已提交
148

xiebaiyuan's avatar
xiebaiyuan 已提交
149 150 151 152
template <typename T>
struct ClearTensor<CPU, T> {
  void operator()(framework::Tensor *tensor) {
    auto size = tensor->numel();
Z
Zhen Wang 已提交
153
    auto *tensor_data = tensor->data<T>();
154
    memset((void *)tensor_data, 0, sizeof(T) * size);  // NOLINT
xiebaiyuan's avatar
xiebaiyuan 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168
  }
};

template <typename T>
struct RowwiseAdd<CPU, T> {
  void operator()(const framework::Tensor &input,
                  const framework::Tensor &vector, framework::Tensor *output) {
    auto in_dims = input.dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_MOBILE_ENFORCE((vector.numel() == size),
                          "vector.numel() must be equal to size.");
    PADDLE_MOBILE_ENFORCE((output->dims() == in_dims),
                          "output->dims() must be equal to in_dims.");

Z
Zhen Wang 已提交
169 170 171
    auto *input_data = input.data<T>();
    auto *out_data = output->data<T>();
    auto *vec_data = vector.data<T>();
xiebaiyuan's avatar
xiebaiyuan 已提交
172 173 174 175 176 177 178 179 180 181 182
    for (int64_t i = 0; i < in_dims[0]; ++i) {
      for (int64_t j = 0; j < size; ++j) {
        out_data[i * size + j] = input_data[i * size + j] + vec_data[j];
      }
    }
  }
};

template struct RowwiseAdd<CPU, float>;
template struct ClearTensor<CPU, float>;

朔-望's avatar
朔-望 已提交
183 184 185
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile