math_function.cpp 4.9 KB
Newer Older
Z
zhaojiaying01 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhaojiaying01 已提交
15
#include "operators/math/math_function.h"
朔-望's avatar
朔-望 已提交
16 17

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
18 19 20
namespace operators {
namespace math {

朔-望's avatar
朔-望 已提交
21 22 23 24
template <>
void gemm<float>(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB,
                 const int M, const int N, const int K, const float alpha,
                 const float *A, const float *B, const float beta, float *C) {
25 26 27 28 29
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
朔-望's avatar
朔-望 已提交
30 31
}

朔-望's avatar
朔-望 已提交
32 33 34 35 36
template <>
void gemm<double>(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB,
                  const int M, const int N, const int K, const double alpha,
                  const double *A, const double *B, const double beta,
                  double *C) {
37 38 39 40 41
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
朔-望's avatar
朔-望 已提交
42 43
}

朔-望's avatar
朔-望 已提交
44 45 46 47
template <>
void gemm<float>(const bool transA, const bool transB, const int M, const int N,
                 const int K, const float alpha, const float *A, const int lda,
                 const float *B, const int ldb, const float beta, float *C,
朔-望's avatar
朔-望 已提交
48
                 const int ldc) {
49 50 51
  cblas_sgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
朔-望's avatar
朔-望 已提交
52 53
}

朔-望's avatar
朔-望 已提交
54
template <>
朔-望's avatar
朔-望 已提交
55
void gemm<double>(const bool transA, const bool transB, const int M,
朔-望's avatar
朔-望 已提交
56 57 58
                  const int N, const int K, const double alpha, const double *A,
                  const int lda, const double *B, const int ldb,
                  const double beta, double *C, const int ldc) {
59 60 61
  cblas_dgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
朔-望's avatar
朔-望 已提交
62 63
}

朔-望's avatar
朔-望 已提交
64
template <>
朔-望's avatar
朔-望 已提交
65
void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
朔-望's avatar
朔-望 已提交
66 67
                   const framework::Tensor &matrix_b, bool trans_b, float alpha,
                   framework::Tensor *matrix_out, float beta) {
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  //  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
  //  dim_out.size() ==
  //  2,
  //                 "The input and output of matmul be matrix");
  //
  //  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
  //                     platform::is_cpu_place(matrix_b.place())
  //                     &&
  //                     platform::is_cpu_place(matrix_out->place()),
  //                 "Matrix must all be in CPUPlace");

  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;

  gemm<float>(transA, transB, M, N, K, alpha, matrix_a.data<float>(),
              matrix_b.data<float>(), beta, matrix_out->data<float>());
朔-望's avatar
朔-望 已提交
91 92
}

朔-望's avatar
朔-望 已提交
93
template <>
朔-望's avatar
朔-望 已提交
94 95
void matmul<double>(const framework::Tensor &matrix_a, bool trans_a,
                    const framework::Tensor &matrix_b, bool trans_b,
朔-望's avatar
朔-望 已提交
96
                    double alpha, framework::Tensor *matrix_out, double beta) {
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  //  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
  //  dim_out.size() ==
  //  2,
  //                 "The input and output of matmul be matrix");
  //
  //  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
  //                     platform::is_cpu_place(matrix_b.place())
  //                     &&
  //                     platform::is_cpu_place(matrix_out->place()),
  //                 "Matrix must all be in CPUPlace");

  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;

  gemm<double>(transA, transB, M, N, K, alpha, matrix_a.data<double>(),
               matrix_b.data<double>(), beta, matrix_out->data<double>());
朔-望's avatar
朔-望 已提交
120 121
}

朔-望's avatar
朔-望 已提交
122 123 124
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile