math_function.cpp 4.7 KB
Newer Older
Z
zhaojiaying01 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhaojiaying01 已提交
15
#include "operators/math/math_function.h"
Z
zhaojiaying01 已提交
16
#include "operators/math/gemm.h"
朔-望's avatar
朔-望 已提交
17 18

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
19 20 21
namespace operators {
namespace math {

朔-望's avatar
朔-望 已提交
22
template <>
朔-望's avatar
朔-望 已提交
23
void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
朔-望's avatar
朔-望 已提交
24
                   const framework::Tensor &matrix_b, bool trans_b, float alpha,
25 26
                   framework::Tensor *matrix_out, float beta, bool relu,
                   float *bias) {
27 28 29
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
30 31 32 33 34 35 36 37 38 39
  //  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
  //  dim_out.size() ==
  //  2,
  //                 "The input and output of matmul be matrix");
  //
  //  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
  //                     platform::is_cpu_place(matrix_b.place())
  //                     &&
  //                     platform::is_cpu_place(matrix_out->place()),
  //                 "Matrix must all be in CPUPlace");
40 41 42

  int M = dim_out[0];
  int N = dim_out[1];
43
  int K = (!trans_a) ? dim_a[1] : dim_a[0];
44

45 46 47 48
#ifdef _OPENMP
  Sgemm_omp(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(),
            N, beta, matrix_out->data<float>(), N, relu, bias);
#else
Z
zhaojiaying01 已提交
49
  Sgemm(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
50
        beta, matrix_out->data<float>(), N, relu, bias);
51
#endif
52
}
朔-望's avatar
朔-望 已提交
53

朔-望's avatar
朔-望 已提交
54
template <>
55 56 57 58
void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
                         const framework::Tensor &matrix_b, bool trans_b,
                         float alpha, framework::Tensor *matrix_out, float beta,
                         bool relu, framework::Tensor *new_scale,
Y
yangfei 已提交
59
                         framework::Tensor *new_bias, int group, float *bias) {
60 61 62
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
Z
zhaojiaying01 已提交
63 64 65 66 67 68 69 70 71 72
  //  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
  //  dim_out.size() ==
  //  2,
  //                 "The input and output of matmul be matrix");
  //
  //  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
  //                     platform::is_cpu_place(matrix_b.place())
  //                     &&
  //                     platform::is_cpu_place(matrix_out->place()),
  //                 "Matrix must all be in CPUPlace");
73 74 75

  int M = dim_out[0];
  int N = dim_out[1];
76 77
  int K = (!trans_a) ? dim_a[1] : dim_a[0];

78 79 80 81
#ifdef _OPENMP
  SgemmWithBn_omp(M, N, K, alpha, matrix_a.data<float>(), K,
                  matrix_b.data<float>(), N, beta, matrix_out->data<float>(), N,
                  relu, new_scale->data<float>() + group,
Y
yangfei 已提交
82
                  new_bias->data<float>() + group, bias);
83
#else
Z
zhaojiaying01 已提交
84 85
  SgemmWithBn(M, N, K, alpha, matrix_a.data<float>(), K, matrix_b.data<float>(),
              N, beta, matrix_out->data<float>(), N, relu,
Y
yangfei 已提交
86 87
              new_scale->data<float>() + group, new_bias->data<float>() + group,
              bias);
88 89
#endif
}
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
void matmulWithPRelu(const framework::Tensor &matrix_a, bool trans_a,
                     const framework::Tensor &matrix_b, bool trans_b,
                     framework::Tensor *matrix_out, float *p, std::string mode,
                     float *bias, float *bias1) {
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  //  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
  //  dim_out.size() ==
  //  2,
  //                 "The input and output of matmul be matrix");
  //
  //  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
  //                     platform::is_cpu_place(matrix_b.place())
  //                     &&
  //                     platform::is_cpu_place(matrix_out->place()),
  //                 "Matrix must all be in CPUPlace");

  int M = dim_out[0];
  int N = dim_out[1];
  int K = (!trans_a) ? dim_a[1] : dim_a[0];

#ifdef _OPENMP
113 114
  SgemmWithPRelu_omp(M, N, K, matrix_a.data<float>(), K, matrix_b.data<float>(),
                     N, matrix_out->data<float>(), N, p, mode, bias, bias1);
115 116 117 118 119 120
#else
  SgemmWithPRelu(M, N, K, matrix_a.data<float>(), K, matrix_b.data<float>(), N,
                 matrix_out->data<float>(), N, p, mode, bias, bias1);

#endif
}
朔-望's avatar
朔-望 已提交
121

朔-望's avatar
朔-望 已提交
122 123 124
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile