depthwise_conv_3x3.cpp 78.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/math/depthwise_conv_3x3.h"
15
#if __ARM_NEON
E
eclipsess 已提交
16
#include <arm_neon.h>
L
liuruilong 已提交
17
#endif
E
format  
eclipsess 已提交
18
#include <vector>
W
wangliu 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

namespace paddle_mobile {
namespace operators {
namespace math {
void DepthwiseConv3x3(const Tensor *input, vector<int> strides,
                      vector<int> paddings, const Tensor *filter, Tensor *bias,
                      Tensor *output, bool if_bias) {
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  const int _kernel_size = 3;
  const int stride_height = strides[0];
  const int stride_width = strides[1];
  const int padding_height = paddings[0];
  const int padding_width = paddings[1];
  const float zero = 0;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int filter_channel_stride = 9;

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  if (if_bias) {
    math::expand_bias(*bias, 1, output->dims());
    output->ShareDataWith(*bias);
  }
  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  const int filter_batch_stride = output_channels * output_channel_stride;
  const float *pos1, *pos2, *pos3, *filter1, *filter2, *filter3, *output_ptr;
  int hstart, wstart, hend, wend;
  float result;
  for (int i = 0; i < batch_size; ++i) {
    for (int c = 0; c < output_channels; ++c) {
      filter1 = filter_data;
      filter2 = filter1 + 3;
      filter3 = filter2 + 3;

      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
          hstart = ph * stride_height - padding_height;
          wstart = pw * stride_width - padding_width;
          hend = min(hstart + _kernel_size, input_height + padding_height);
          wend = min(wstart + _kernel_size, input_width + padding_width);
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          hend = min(hend, input_height);
          wend = min(wend, input_width);
          pos1 = input_data + hstart * input_width + wstart;
          pos2 = input_data + (hstart + 1) * input_width + wstart;
          pos3 = input_data + (hstart + 2) * input_width + wstart;
          output_ptr = output_data + ph * output_width + pw;

          if (hend - hstart != 3 || wend - wstart != 3) {
            result = 0;
            float fake_input[9] = {0};
            if (hstart == 0 && wstart == 0) {
              // 左上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k -
                                   (3 - wend)];
                  }
                }
              }
            } else if (hstart == 0 && wend == input_width) {
              // 右上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height && wstart == 0) {
              // 左下角

              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - 1 - hstart && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k - (3 - wend)];
                  }
                }
              }
            } else if (hend == input_height && wend == input_width) {
              // 右下角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1 &&
                      k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            } else if (hstart == 0) {
              // 顶部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height) {
              // 底部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }

            } else if (wstart == 0) {
              // 左侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width +
                                   (k - (3 - wend))];
                  }
                }
              }

            } else if (wend == input_width) {
              // 右侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            }
            for (int l = 0; l < 9; ++l) {
              result += fake_input[l] * filter1[l];
            }
            if (if_bias) {
              output_data[ph * output_width + pw] += result;
            } else {
              output_data[ph * output_width + pw] = result;
            }

          } else {
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#if __ARM_NEON
#if __aarch64__
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);

            const float32x4_t v_filter1 = vld1q_f32(filter1);
            const float32x4_t v_filter2 = vld1q_f32(filter2);
            const float32x4_t v_filter3 = vld1q_f32(filter3);
            float32x4_t mula = vmulq_f32(data1, v_filter1);
            mula = vmlaq_f32(mula, data2, v_filter2);
            mula = vmlaq_f32(mula, data3, v_filter3);
            float32x2_t res = vpadd_f32(
                vget_high_f32(vsetq_lane_f32(0, mula, 3)), vget_low_f32(mula));
            res = vpadd_f32(res, res);
            if (if_bias) {
              output_data[ph * output_width + pw] += vget_lane_f32(res, 0);
            } else {
              output_data[ph * output_width + pw] = vget_lane_f32(res, 0);
            }
#else
W
wangliu 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            asm volatile(

                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q4}, [%[filter1]]        \n\t"
                "vmov.f32 q0,    #0.0              \n\t"

                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q5}, [%[filter2]]        \n\t"
                "vmla.f32 q0, q1, q4           \n\t"

                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vld1.32  {q6}, [%[filter3]]        \n\t"

                "vmla.f32 q0, q2, q5           \n\t"
                "vmla.f32 q0, q3, q6          \n\t"

                "vmov.f32 d1[1],  %[zero]         \n\t"

                "vadd.f32  d4, d0, d1           \n\t"
                "vadd.f32  s10, s8, s9            \n\t"
                "vst1.32 {d5[0]},[%[output_ptr]]    \n\t"
                :
                : [input_data] "r"(input_data), [pos1] "r"(pos1),
                  [pos2] "r"(pos2), [pos3] "r"(pos3), [filter1] "r"(filter1),
                  [filter2] "r"(filter2), [filter3] "r"(filter3),
                  [output_ptr] "r"(output_ptr), [zero] "r"(zero)
                : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6");
231
#endif  // __aarch64__
W
wangliu 已提交
232 233
#else

234
#endif  // __ARM_NEON
W
wangliu 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248
          }
        }
      }
      input_data += input_channel_stride;
      output_data += output_channel_stride;
      filter_data += filter_channel_stride;
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
}

void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
                          Tensor *output, Tensor *bias, bool if_bias) {
249
#if __ARM_NEON
W
wangliu 已提交
250 251 252
  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
253 254 255 256
  const float *bias_data;
  if (if_bias) {
    bias_data = bias->data<float>();
  }
W
wangliu 已提交
257 258 259

  const int h = static_cast<int>(input->dims()[2]);
  const int w = static_cast<int>(input->dims()[3]);
E
eclipsess 已提交
260
  //  const int l = h;
W
wangliu 已提交
261 262 263 264 265 266 267 268 269 270 271 272
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const int hxw = h * w;
  float32x4_t vbias = vdupq_n_f32(0.0);
  for (int b = 0; b < batch_size; ++b) {
    const float *filter_data_tmp = filter_data;

    for (int j = 0; j < c; ++j) {
      if (if_bias) {
        vbias = vdupq_n_f32(bias_data[j]);
      }

E
eclipsess 已提交
273
      int w_mid = w - 2;  // l=1->l_mid=-1,l=2->l_mid=0
W
wangliu 已提交
274 275 276 277 278 279 280 281 282 283 284
      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
E
eclipsess 已提交
285 286 287 288 289 290 291 292 293 294
                       w21 * input_data[w] + w22 * input_data[w + 1];
      output_data[w - 1] = w10 * input_data[w - 2] + w11 * input_data[w - 1] +
                           w20 * input_data[2 * w - 2] +
                           w21 * input_data[2 * w - 1];
      output_data[(h - 1) * w] =
          w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w + 1] +
          w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
      output_data[h * w - 1] =
          w00 * input_data[h * w - w - 2] + w01 * input_data[h * w - w - 1] +
          w10 * input_data[h * w - 2] + w11 * input_data[h * w - 1];
E
eclipsess 已提交
295 296
      if (if_bias) {
        output_data[0] += bias_data[j];
E
eclipsess 已提交
297 298 299
        output_data[w - 1] += bias_data[j];
        output_data[(h - 1) * w] += bias_data[j];
        output_data[h * w - 1] += bias_data[j];
E
eclipsess 已提交
300
      }
W
wangliu 已提交
301

E
eclipsess 已提交
302 303 304 305 306 307 308 309 310 311 312 313
      for (int i = 1; i < h - 1; ++i) {
        output_data[i * w] =
            w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1] +
            w11 * input_data[i * w] + w12 * input_data[i * w + w] +
            w21 * input_data[i * w + w] + w22 * input_data[i * w + w + 1];

        output_data[i * w + w - 1] = w00 * input_data[i * w + w - 1 - w - 1] +
                                     w01 * input_data[i * w + w - 1 - w] +
                                     w10 * input_data[i * w + w - 1 - 1] +
                                     w11 * input_data[i * w + w - 1] +
                                     w20 * input_data[i * w + w - 1 + w - 1] +
                                     w21 * input_data[i * w + w - 1 + w];
E
eclipsess 已提交
314
        if (if_bias) {
E
eclipsess 已提交
315 316
          output_data[i * w] += bias_data[j];
          output_data[i * w + w - 1] += bias_data[j];
E
eclipsess 已提交
317
        }
W
wangliu 已提交
318 319 320 321 322 323 324 325
      }

      // top 1 row and bottom 1 row
      const float *input_tmp = input_data;

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, out0;
      in0 = vld1q_f32(input_tmp);
E
eclipsess 已提交
326 327
      in2 = vld1q_f32(input_tmp + w);
      const float *input_tmp_end = input_tmp + (h - 2) * w;
W
wangliu 已提交
328
      in4 = vld1q_f32(input_tmp_end);
E
eclipsess 已提交
329 330
      in6 = vld1q_f32(input_tmp_end + w);
      int c_mid = w_mid;
W
wangliu 已提交
331 332 333
      auto output_ptr = output_data + 1;
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
334
        in3 = vld1q_f32(input_tmp + w + 4);
W
wangliu 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        out0 = vmulq_n_f32(in0, w10);
        out0 = vmlaq_n_f32(out0, tmp0, w11);
        out0 = vmlaq_n_f32(out0, tmp1, w12);
        out0 = vmlaq_n_f32(out0, in2, w20);
        out0 = vmlaq_n_f32(out0, tmp2, w21);
        out0 = vmlaq_n_f32(out0, tmp3, w22);
        out0 = vaddq_f32(out0, vbias);

        vst1q_f32(output_ptr, out0);

        in5 = vld1q_f32(input_tmp_end + 4);
E
eclipsess 已提交
353
        in7 = vld1q_f32(input_tmp_end + w + 4);
W
wangliu 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        out0 = vmulq_n_f32(in4, w00);
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
        out0 = vmlaq_n_f32(out0, in6, w10);
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vaddq_f32(out0, vbias);

E
eclipsess 已提交
368
        vst1q_f32(output_ptr + (h - 1) * w, out0);
W
wangliu 已提交
369 370 371 372 373 374 375 376 377 378 379 380

        // can optimize to each 8 stride.
        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }

      // top right pad
E
eclipsess 已提交
381 382
      float32x4_t pad0 = vdupq_n_f32(input_data[w - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_data[2 * w - 1]);
W
wangliu 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 1);
      tmp3 = vextq_f32(in2, pad1, 2);

      out0 = vmulq_n_f32(in0, w10);
      out0 = vmlaq_n_f32(out0, tmp0, w11);
      out0 = vmlaq_n_f32(out0, tmp1, w12);
      out0 = vmlaq_n_f32(out0, in2, w20);
      out0 = vmlaq_n_f32(out0, tmp2, w21);
      out0 = vmlaq_n_f32(out0, tmp3, w22);
      out0 = vaddq_f32(out0, vbias);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, out0, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, out0, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, out0, 2);
        }
      }

      // bottom right pad
E
eclipsess 已提交
410 411
      float32x4_t pad2 = vdupq_n_f32(input_data[h * w - 1 - w]);
      float32x4_t pad3 = vdupq_n_f32(input_data[h * w - 1]);
W
wangliu 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 1);
      tmp3 = vextq_f32(in6, pad3, 2);

      out0 = vmulq_n_f32(in4, w00);
      out0 = vmlaq_n_f32(out0, tmp0, w01);
      out0 = vmlaq_n_f32(out0, tmp1, w02);
      out0 = vmlaq_n_f32(out0, in6, w10);
      out0 = vmlaq_n_f32(out0, tmp2, w11);
      out0 = vmlaq_n_f32(out0, tmp3, w12);
      out0 = vaddq_f32(out0, vbias);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
E
eclipsess 已提交
428
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 0);
W
wangliu 已提交
429 430
        }
        if (i == 1) {
E
eclipsess 已提交
431
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 1);
W
wangliu 已提交
432 433
        }
        if (i == 2) {
E
eclipsess 已提交
434
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 2);
W
wangliu 已提交
435 436 437 438
        }
      }
      // mid

E
eclipsess 已提交
439 440 441
      for (int i = 0; i < h - 2; ++i) {
        auto output_ptr = output_data + (i + 1) * w + 1;
        input_tmp = input_data + i * w;
W
wangliu 已提交
442
        auto in0_tmp = vld1q_f32(input_tmp);
E
eclipsess 已提交
443 444 445
        auto in2_tmp = vld1q_f32(input_tmp + w);
        auto in4_tmp = vld1q_f32(input_tmp + w + w);
        c_mid = w_mid;
W
wangliu 已提交
446 447
        for (; c_mid > 3; c_mid -= 4) {
          auto in1_tmp = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
448 449
          auto in3_tmp = vld1q_f32(input_tmp + w + 4);
          auto in5_tmp = vld1q_f32(input_tmp + w + w + 4);
W
wangliu 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

          tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
          tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
          tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
          tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
          tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
          tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);

          out0 = vmulq_n_f32(in0_tmp, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2_tmp, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4_tmp, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);
          out0 = vaddq_f32(out0, vbias);

          vst1q_f32(output_ptr, out0);

          output_ptr += 4;
          input_tmp += 4;
          in0_tmp = in1_tmp;
          in2_tmp = in3_tmp;
          in4_tmp = in5_tmp;
        }

E
eclipsess 已提交
478 479 480
        float32x4_t pad0 = vdupq_n_f32(input_data[i * w + w - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_data[i * w + w - 1 + w]);
        float32x4_t pad2 = vdupq_n_f32(input_data[i * w + w - 1 + w + w]);
W
wangliu 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

        tmp0 = vextq_f32(in0_tmp, pad0, 1);
        tmp1 = vextq_f32(in0_tmp, pad0, 2);
        tmp2 = vextq_f32(in2_tmp, pad1, 1);
        tmp3 = vextq_f32(in2_tmp, pad1, 2);
        tmp4 = vextq_f32(in4_tmp, pad2, 1);
        tmp5 = vextq_f32(in4_tmp, pad2, 2);

        out0 = vmulq_n_f32(in0_tmp, w00);
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
        out0 = vmlaq_n_f32(out0, in2_tmp, w10);
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vmlaq_n_f32(out0, in4_tmp, w20);
        out0 = vmlaq_n_f32(out0, tmp4, w21);
        out0 = vmlaq_n_f32(out0, tmp5, w22);
        out0 = vaddq_f32(out0, vbias);

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, out0, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, out0, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, out0, 2);
          }
        }
      }
      output_data += hxw;
      input_data += hxw;
      filter_data_tmp += 9;
    }
  }
L
liuruilong 已提交
517
#endif
W
wangliu 已提交
518
}
E
eclipsess 已提交
519

E
eclipsess 已提交
520
void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
521 522
                                   Tensor *output, const Tensor *new_scale,
                                   const Tensor *new_bias, bool if_relu) {
523
#if __ARM_NEON
E
eclipsess 已提交
524
  const float *input_data = input->data<float>();
E
eclipsess 已提交
525
  const float *filter_data = filter->data<float>();
E
eclipsess 已提交
526 527 528 529 530
  float *output_data = output->data<float>();
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const int batch_size = static_cast<int>(input->dims()[0]);
531 532 533 534 535 536 537 538 539 540
  const int input_channel = static_cast<int>(input->dims()[1]);

  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);

  const int hxw = input_height * input_width;

  const int l = input_height;
541

E
eclipsess 已提交
542 543
  float32x4_t vzero = vdupq_n_f32(0);

544
  for (int b = 0; b < batch_size; b++) {
545
#pragma omp parallel for
546
    for (int c = 0; c < input_channel; c++) {
547 548 549 550 551
      const float *filter_data = filter->data<float>() + c * 9;
      const float *input_data = input->data<float>() + c * hxw;
      float *output_data = output->data<float>() + c * hxw;
      float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
      float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
552 553 554 555 556 557 558 559 560 561

      float w00 = filter_data[0];
      float w01 = filter_data[1];
      float w02 = filter_data[2];
      float w10 = filter_data[3];
      float w11 = filter_data[4];
      float w12 = filter_data[5];
      float w20 = filter_data[6];
      float w21 = filter_data[7];
      float w22 = filter_data[8];
E
eclipsess 已提交
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
      for (int i = 1; i < output_height - 1; i++) {
        float *output_ptr;
        float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3, tmp4,
            tmp5, out0;
        for (int m = 1; m < output_width - 4; m += 4) {
          output_ptr = output_data + i * output_width + m;
          in0 = vld1q_f32(input_data + (i - 1) * input_width + m - 1);
          in1 = vld1q_f32(input_data + (i - 1) * input_width + m + 3);
          in2 = vld1q_f32(input_data + i * input_width + m - 1);
          in3 = vld1q_f32(input_data + i * input_width + m + 3);
          in4 = vld1q_f32(input_data + (i + 1) * input_width + m - 1);
          in5 = vld1q_f32(input_data + (i + 1) * input_width + m + 3);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          out0 = vmulq_n_f32(in0, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);

          out0 = vmlaq_f32(vnewbias, vnewscale, out0);
          if (if_relu) {
            out0 = vmaxq_f32(out0, vzero);
          }
          vst1q_f32(output_ptr, out0);
        }
        int m;
        for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
        }

        for (int j = m; j < output_width - 1; j++) {
          output_data[i * output_width + j] =
              input_data[(i - 1) * input_width + j - 1] * w00 +
              input_data[(i - 1) * input_width + j] * w01 +
              input_data[(i - 1) * input_width + j + 1] * w02 +
              input_data[(i)*input_width + j - 1] * w10 +
              input_data[(i)*input_width + j] * w11 +
              input_data[(i)*input_width + j + 1] * w12 +
              input_data[(i + 1) * input_width + j - 1] * w20 +
              input_data[(i + 1) * input_width + j] * w21 +
              input_data[(i + 1) * input_width + j + 1] * w22;
          output_data[i * output_width + j] =
              newscale_data[c] * output_data[i * output_width + j] +
              newbias_data[c];
          if (if_relu) {
            output_data[i * output_width + j] =
                output_data[i * output_width + j] < 0
                    ? 0
                    : output_data[i * output_width + j];
          }
        }
      }

E
eclipsess 已提交
626 627 628 629 630
      output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
                       w21 * input_data[l] + w22 * input_data[l + 1];
      output_data[l - 1] = w10 * input_data[l - 2] + w11 * input_data[l - 1] +
                           w20 * input_data[2 * l - 2] +
                           w21 * input_data[2 * l - 1];
E
eclipsess 已提交
631
      output_data[(l - 1) * l] =
E
eclipsess 已提交
632 633 634 635 636 637
          w01 * input_data[(l - 2) * l] + w02 * input_data[(l - 2) * l + 1] +
          w11 * input_data[(l - 1) * l] + w12 * input_data[(l - 1) * l + 1];
      output_data[l * l - 1] = w00 * input_data[(l - 2) * (l + 1)] +
                               w01 * input_data[(l - 2) * (l + 1) + 1] +
                               w10 * input_data[l * l - 2] +
                               w11 * input_data[l * l - 1];
638
      output_data[0] = output_data[0] * newscale_data[c] + newbias_data[c];
639
      output_data[l - 1] =
640
          output_data[l - 1] * newscale_data[c] + newbias_data[c];
641
      output_data[(l - 1) * l] =
642
          output_data[(l - 1) * l] * newscale_data[c] + newbias_data[c];
643
      output_data[l * l - 1] =
644
          output_data[l * l - 1] * newscale_data[c] + newbias_data[c];
645

E
eclipsess 已提交
646 647 648 649 650 651 652 653 654 655
      if (if_relu) {
        output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
        output_data[l - 1] = output_data[l - 1] < 0 ? 0 : output_data[l - 1];
        output_data[(l - 1) * l] =
            output_data[(l - 1) * l] < 0 ? 0 : output_data[(l - 1) * l];
        output_data[l * l - 1] =
            output_data[l * l - 1] < 0 ? 0 : output_data[l * l - 1];
      }
      for (int i = 1; i < l - 1; ++i) {
        output_data[i * l] =
E
eclipsess 已提交
656 657 658
            w01 * input_data[i * l - l] + w02 * input_data[i * l - l + 1] +
            w11 * input_data[i * l] + w12 * input_data[i * l + 1] +
            w21 * input_data[i * l + l] + w22 * input_data[i * l + l + 1];
659

E
eclipsess 已提交
660 661 662 663 664 665
        output_data[i * l + l - 1] = w00 * input_data[i * l + l - 1 - l - 1] +
                                     w01 * input_data[i * l + l - 1 - l] +
                                     w10 * input_data[i * l + l - 1 - 1] +
                                     w11 * input_data[i * l + l - 1] +
                                     w20 * input_data[i * l + l - 1 + l - 1] +
                                     w21 * input_data[i * l + l - 1 + l];
666
        output_data[i * l] =
667
            output_data[i * l] * newscale_data[c] + newbias_data[c];
668
        output_data[i * l + l - 1] =
669
            output_data[i * l + l - 1] * newscale_data[c] + newbias_data[c];
670

E
eclipsess 已提交
671 672 673 674 675 676 677
        if (if_relu) {
          output_data[i * l] = output_data[i * l] < 0 ? 0 : output_data[i * l];
          output_data[i * l + l - 1] =
              output_data[i * l + l - 1] < 0 ? 0 : output_data[i * l + l - 1];
        }
      }

678 679 680 681 682 683 684 685
      int m;
      for (m = 1; m < output_width - 4; m += 4) {
        float *output_ptr = output_data + m;
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + m - 1);
        in1 = vld1q_f32(input_data + m + 3);
        in2 = vld1q_f32(input_data + input_width + m - 1);
        in3 = vld1q_f32(input_data + input_width + m + 3);
E
eclipsess 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = vmulq_n_f32(in0, w10);
        out0 = vmlaq_n_f32(out0, tmp0, w11);
        out0 = vmlaq_n_f32(out0, tmp1, w12);
        out0 = vmlaq_n_f32(out0, in2, w20);
        out0 = vmlaq_n_f32(out0, tmp2, w21);
        out0 = vmlaq_n_f32(out0, tmp3, w22);
        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
        if (if_relu) {
          out0 = vmaxq_f32(out0, vzero);
        }
        vst1q_f32(output_ptr, out0);
701
      }
702 703

      for (m = 1; (m + 3) < output_width - 1; m += 4) {
704 705 706 707 708 709 710 711
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[j] = input_data[j - 1] * w10 + input_data[j] * w11 +
                         input_data[j + 1] * w12 +
                         input_data[input_width + j - 1] * w20 +
                         input_data[input_width + j] * w21 +
                         input_data[input_width + j + 1] * w22;
        output_data[j] = output_data[j] * newscale_data[c] + newbias_data[c];
E
eclipsess 已提交
712

713 714 715 716
        if (if_relu) {
          output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
        }
      }
E
eclipsess 已提交
717

718
      for (m = 1; m < output_width - 4; m += 4) {
719 720
        float *output_ptr =
            output_data + (output_height - 1) * output_width + m;
E
eclipsess 已提交
721

722 723 724 725 726 727 728 729 730 731
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + (output_height - 2) * input_width + m - 1);
        in1 = vld1q_f32(input_data + (output_height - 2) * input_width + m + 3);
        in2 = vld1q_f32(input_data + (output_height - 1) * input_width + m - 1);
        in3 = vld1q_f32(input_data + (output_height - 1) * input_width + m + 3);
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = vmulq_n_f32(in0, w00);
E
eclipsess 已提交
732 733
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
734
        out0 = vmlaq_n_f32(out0, in2, w10);
E
eclipsess 已提交
735 736 737 738 739 740
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
        if (if_relu) {
          out0 = vmaxq_f32(out0, vzero);
        }
741
        vst1q_f32(output_ptr, out0);
E
eclipsess 已提交
742
      }
743 744 745 746 747 748 749 750 751 752 753 754 755 756
      for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[(output_height - 1) * input_width + j] =
            input_data[(output_height - 2) * input_width + j - 1] * w00 +
            input_data[(output_height - 2) * input_width + j] * w01 +
            input_data[(output_height - 2) * input_width + j + 1] * w02 +
            input_data[(output_height - 1) * input_width + j - 1] * w10 +
            input_data[(output_height - 1) * input_width + j] * w11 +
            input_data[(output_height - 1) * input_width + j + 1] * w12;
        output_data[(output_height - 1) * output_width + j] =
            output_data[(output_height - 1) * output_width + j] *
                newscale_data[c] +
            newbias_data[c];
E
eclipsess 已提交
757

758 759 760 761 762 763
        if (if_relu) {
          output_data[(output_height - 1) * output_width + j] =
              output_data[(output_height - 1) * output_width + j] < 0
                  ? 0
                  : output_data[(output_height - 1) * output_width + j];
        }
E
eclipsess 已提交
764
      }
765 766
    }
  }
E
eclipsess 已提交
767

768
    /*
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        const float *input_data = input->data<float>();
        const float *filter_data = filter->data<float>();
        float *output_data = output->data<float>();
        const float *newscale_data = new_scale->data<float>();
        const float *newbias_data = new_bias->data<float>();

        const int h = static_cast<int>(input->dims()[2]);
        const int w = static_cast<int>(input->dims()[3]);
        const int l = h;

        const int batch_size = static_cast<int>(input->dims()[0]);
        const int c = static_cast<int>(input->dims()[1]);
        const int hxw = h * w;
        float32x4_t vnewbias = vdupq_n_f32(0.0);
        float32x4_t vnewscale = vdupq_n_f32(1.0);
        float32x4_t vzero = vdupq_n_f32(0);

        for (int b = 0; b < batch_size; ++b) {
          const float *filter_data_tmp = filter_data;

          for (int j = 0; j < c; ++j) {
            vnewbias = vdupq_n_f32(newbias_data[j]);
            vnewscale = vdupq_n_f32(newscale_data[j]);

            int l_mid = l - 2;  // l=1->l_mid=-1,l=2->l_mid=0
            float w00 = filter_data_tmp[0];
            float w01 = filter_data_tmp[1];
            float w02 = filter_data_tmp[2];
            float w10 = filter_data_tmp[3];
            float w11 = filter_data_tmp[4];
            float w12 = filter_data_tmp[5];
            float w20 = filter_data_tmp[6];
            float w21 = filter_data_tmp[7];
            float w22 = filter_data_tmp[8];

            output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
                             w21 * input_data[l] + w22 * input_data[l + 1];

            output_data[l - 1] = w10 * input_data[l - 2] + w11 * input_data[l -
       1] + w20 * input_data[2 * l - 2] + w21 * input_data[2 * l - 1];

            output_data[(l - 1) * l] =
                w01 * input_data[(l - 2) * l] + w02 * input_data[(l - 2) * l +
       1] + w11 * input_data[(l - 1) * l] + w12 * input_data[(l - 1) * l + 1];
            output_data[l * l - 1] = w00 * input_data[(l - 2) * (l + 1)] +
                                     w01 * input_data[(l - 2) * (l + 1) + 1] +
                                     w10 * input_data[l * l - 2] +
                                     w11 * input_data[l * l - 1];
            output_data[0] = output_data[0] * newscale_data[j] +
       newbias_data[j]; output_data[l - 1] = output_data[l - 1] *
       newscale_data[j] + newbias_data[j]; output_data[(l - 1) * l] =
                output_data[(l - 1) * l] * newscale_data[j] + newbias_data[j];
            output_data[l * l - 1] =
                output_data[l * l - 1] * newscale_data[j] + newbias_data[j];
E
eclipsess 已提交
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
            if (if_relu) {
              output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
              output_data[l - 1] = output_data[l - 1] < 0 ? 0 : output_data[l -
       1]; output_data[(l - 1) * l] = output_data[(l - 1) * l] < 0 ? 0 :
       output_data[(l - 1) * l]; output_data[l * l - 1] = output_data[l * l - 1]
       < 0 ? 0 : output_data[l * l - 1];
            }
            for (int i = 1; i < l - 1; ++i) {
              output_data[i * l] =
                  w01 * input_data[i * l - l] + w02 * input_data[i * l - l + 1]
       + w11 * input_data[i * l] + w12 * input_data[i * l + 1] + w21 *
       input_data[i * l + l] + w22 * input_data[i * l + l + 1]; output_data[i *
       l + l - 1] = w00 * input_data[i * l + l - 1 - l - 1] + w01 * input_data[i
       * l + l - 1 - l] + w10 * input_data[i * l + l - 1 - 1] + w11 *
       input_data[i * l + l - 1] + w20 * input_data[i * l + l - 1 + l - 1] + w21
       * input_data[i * l + l - 1 + l]; output_data[i * l] = output_data[i * l]
       * newscale_data[j] + newbias_data[j]; output_data[i * l + l - 1] =
                  output_data[i * l + l - 1] * newscale_data[j] +
       newbias_data[j];

              if (if_relu) {
                output_data[i * l] = output_data[i * l] < 0 ? 0 : output_data[i
       * l]; output_data[i * l + l - 1] = output_data[i * l + l - 1] < 0 ? 0 :
       output_data[i * l + l - 1];
              }
            }
E
eclipsess 已提交
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
            // top 1 row and bottom 1 row
            const float *input_tmp = input_data;

            float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1,
       tmp2, tmp3, tmp4, tmp5, out0; in0 = vld1q_f32(input_tmp); in2 =
       vld1q_f32(input_tmp + l); const float *input_tmp_end = input_tmp + (l -
       2) * l; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end +
       l); int c_mid = l_mid; auto output_ptr = output_data + 1; for (; c_mid >
       3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 =
       vld1q_f32(input_tmp + l + 4);

              tmp0 = vextq_f32(in0, in1, 1);
              tmp1 = vextq_f32(in0, in1, 2);

              tmp2 = vextq_f32(in2, in3, 1);
              tmp3 = vextq_f32(in2, in3, 2);

              out0 = vmulq_n_f32(in0, w10);
              out0 = vmlaq_n_f32(out0, tmp0, w11);
              out0 = vmlaq_n_f32(out0, tmp1, w12);
              out0 = vmlaq_n_f32(out0, in2, w20);
              out0 = vmlaq_n_f32(out0, tmp2, w21);
              out0 = vmlaq_n_f32(out0, tmp3, w22);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              vst1q_f32(output_ptr, out0);

              in5 = vld1q_f32(input_tmp_end + 4);
              in7 = vld1q_f32(input_tmp_end + l + 4);

              tmp0 = vextq_f32(in4, in5, 1);
              tmp1 = vextq_f32(in4, in5, 2);
              tmp2 = vextq_f32(in6, in7, 1);
              tmp3 = vextq_f32(in6, in7, 2);

              out0 = vmulq_n_f32(in4, w00);
              out0 = vmlaq_n_f32(out0, tmp0, w01);
              out0 = vmlaq_n_f32(out0, tmp1, w02);
              out0 = vmlaq_n_f32(out0, in6, w10);
              out0 = vmlaq_n_f32(out0, tmp2, w11);
              out0 = vmlaq_n_f32(out0, tmp3, w12);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              vst1q_f32(output_ptr + (l - 1) * l, out0);

              // can optimize to each 8 stride.
              input_tmp += 4;
              input_tmp_end += 4;
              output_ptr += 4;
              in0 = in1;
              in2 = in3;
              in4 = in5;
              in6 = in7;
            }
E
eclipsess 已提交
909

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
            // top right pad
            float32x4_t pad0 = vdupq_n_f32(input_data[l - 1]);
            float32x4_t pad1 = vdupq_n_f32(input_data[2 * l - 1]);

            tmp0 = vextq_f32(in0, pad0, 1);
            tmp1 = vextq_f32(in0, pad0, 2);
            tmp2 = vextq_f32(in2, pad1, 1);
            tmp3 = vextq_f32(in2, pad1, 2);

            out0 = vmulq_n_f32(in0, w10);
            out0 = vmlaq_n_f32(out0, tmp0, w11);
            out0 = vmlaq_n_f32(out0, tmp1, w12);
            out0 = vmlaq_n_f32(out0, in2, w20);
            out0 = vmlaq_n_f32(out0, tmp2, w21);
            out0 = vmlaq_n_f32(out0, tmp3, w22);
            out0 = vmlaq_f32(vnewbias, vnewscale, out0);
            if (if_relu) {
              out0 = vmaxq_f32(out0, vzero);
            }
            for (int i = 0; i < c_mid; ++i) {
              if (i == 0) {
                vst1q_lane_f32(output_ptr + i, out0, 0);
              }
              if (i == 1) {
                vst1q_lane_f32(output_ptr + i, out0, 1);
              }
              if (i == 2) {
                vst1q_lane_f32(output_ptr + i, out0, 2);
              }
            }
940

941 942 943
            // bottom right pad
            float32x4_t pad2 = vdupq_n_f32(input_data[l * l - 1 - l]);
            float32x4_t pad3 = vdupq_n_f32(input_data[l * l - 1]);
944

945 946 947 948
            tmp0 = vextq_f32(in4, pad2, 1);
            tmp1 = vextq_f32(in4, pad2, 2);
            tmp2 = vextq_f32(in6, pad3, 1);
            tmp3 = vextq_f32(in6, pad3, 2);
949

950
            out0 = vmulq_n_f32(in4, w00);
951 952
            out0 = vmlaq_n_f32(out0, tmp0, w01);
            out0 = vmlaq_n_f32(out0, tmp1, w02);
953
            out0 = vmlaq_n_f32(out0, in6, w10);
954 955 956 957 958 959
            out0 = vmlaq_n_f32(out0, tmp2, w11);
            out0 = vmlaq_n_f32(out0, tmp3, w12);
            out0 = vmlaq_f32(vnewbias, vnewscale, out0);
            if (if_relu) {
              out0 = vmaxq_f32(out0, vzero);
            }
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
            for (int i = 0; i < c_mid; ++i) {
              if (i == 0) {
                vst1q_lane_f32(output_ptr + (l - 1) * l + i, out0, 0);
              }
              if (i == 1) {
                vst1q_lane_f32(output_ptr + (l - 1) * l + i, out0, 1);
              }
              if (i == 2) {
                vst1q_lane_f32(output_ptr + (l - 1) * l + i, out0, 2);
              }
            }
            // mid


            for (int i = 0; i < l - 2; ++i) {
              auto output_ptr = output_data + (i + 1) * l + 1;
              input_tmp = input_data + i * l;
              auto in0_tmp = vld1q_f32(input_tmp);
              auto in2_tmp = vld1q_f32(input_tmp + l);
              auto in4_tmp = vld1q_f32(input_tmp + l + l);
              c_mid = l_mid;
              for (; c_mid > 3; c_mid -= 4) {
                auto in1_tmp = vld1q_f32(input_tmp + 4);
                auto in3_tmp = vld1q_f32(input_tmp + l + 4);
                auto in5_tmp = vld1q_f32(input_tmp + l + l + 4);

                tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
                tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
                tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
                tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
                tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
                tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);

                out0 = vmulq_n_f32(in0_tmp, w00);
                out0 = vmlaq_n_f32(out0, tmp0, w01);
                out0 = vmlaq_n_f32(out0, tmp1, w02);
                out0 = vmlaq_n_f32(out0, in2_tmp, w10);
                out0 = vmlaq_n_f32(out0, tmp2, w11);
                out0 = vmlaq_n_f32(out0, tmp3, w12);
                out0 = vmlaq_n_f32(out0, in4_tmp, w20);
                out0 = vmlaq_n_f32(out0, tmp4, w21);
                out0 = vmlaq_n_f32(out0, tmp5, w22);
                out0 = vmlaq_f32(vnewbias, vnewscale, out0);
                if (if_relu) {
                  out0 = vmaxq_f32(out0, vzero);
                }
                vst1q_f32(output_ptr, out0);
1007

1008 1009 1010 1011 1012 1013
                output_ptr += 4;
                input_tmp += 4;
                in0_tmp = in1_tmp;
                in2_tmp = in3_tmp;
                in4_tmp = in5_tmp;
              }
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
              float32x4_t pad0 = vdupq_n_f32(input_data[i * l + l - 1]);
              float32x4_t pad1 = vdupq_n_f32(input_data[i * l + l - 1 + l]);
              float32x4_t pad2 = vdupq_n_f32(input_data[i * l + l - 1 + l + l]);

              tmp0 = vextq_f32(in0_tmp, pad0, 1);
              tmp1 = vextq_f32(in0_tmp, pad0, 2);
              tmp2 = vextq_f32(in2_tmp, pad1, 1);
              tmp3 = vextq_f32(in2_tmp, pad1, 2);
              tmp4 = vextq_f32(in4_tmp, pad2, 1);
              tmp5 = vextq_f32(in4_tmp, pad2, 2);

              out0 = vmulq_n_f32(in0_tmp, w00);
              out0 = vmlaq_n_f32(out0, tmp0, w01);
              out0 = vmlaq_n_f32(out0, tmp1, w02);
              out0 = vmlaq_n_f32(out0, in2_tmp, w10);
              out0 = vmlaq_n_f32(out0, tmp2, w11);
              out0 = vmlaq_n_f32(out0, tmp3, w12);
              out0 = vmlaq_n_f32(out0, in4_tmp, w20);
              out0 = vmlaq_n_f32(out0, tmp4, w21);
              out0 = vmlaq_n_f32(out0, tmp5, w22);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              for (int i = 0; i < c_mid; ++i) {
                if (i == 0) {
                  vst1q_lane_f32(output_ptr + i, out0, 0);
                }
                if (i == 1) {
                  vst1q_lane_f32(output_ptr + i, out0, 1);
                }
                if (i == 2) {
                  vst1q_lane_f32(output_ptr + i, out0, 2);
                }
              }
1050
            }
1051 1052 1053
            output_data += hxw;
            input_data += hxw;
            filter_data_tmp += 9;
E
eclipsess 已提交
1054 1055
          }
        }
1056 1057
    */

L
liuruilong 已提交
1058
#endif
E
eclipsess 已提交
1059
}
1060 1061 1062 1063

void DepthwiseConvAddBNRelu3x3s2p1(const Tensor *input, const Tensor *filter,
                                   Tensor *output, const Tensor *new_scale,
                                   const Tensor *new_bias, bool if_relu) {
1064
#if __ARM_NEON
L
liuruilong 已提交
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  const int _kernel_size = 3;
  const int stride_height = 2;
  const int stride_width = 2;
  const int padding_height = 1;
  const int padding_width = 1;
  const float zero = 0;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int filter_channel_stride = 9;
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();

  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  const int filter_batch_stride = output_channels * output_channel_stride;
  const float *pos1, *pos2, *pos3, *filter1, *filter2, *filter3, *output_ptr;
  int hstart, wstart, hend, wend;
  float result;
  for (int i = 0; i < batch_size; ++i) {
    for (int c = 0; c < output_channels; ++c) {
      filter1 = filter_data;
      filter2 = filter1 + 3;
      filter3 = filter2 + 3;

      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
          hstart = ph * stride_height - padding_height;
          wstart = pw * stride_width - padding_width;
          hend = min(hstart + _kernel_size, input_height + padding_height);
          wend = min(wstart + _kernel_size, input_width + padding_width);
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          hend = min(hend, input_height);
          wend = min(wend, input_width);
          pos1 = input_data + hstart * input_width + wstart;
          pos2 = input_data + (hstart + 1) * input_width + wstart;
          pos3 = input_data + (hstart + 2) * input_width + wstart;
          output_ptr = output_data + ph * output_width + pw;

          if (hend - hstart != 3 || wend - wstart != 3) {
            result = 0;
            float fake_input[9] = {0};
            if (hstart == 0 && wstart == 0) {
              // 左上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k -
                                   (3 - wend)];
                  }
                }
              }
            } else if (hstart == 0 && wend == input_width) {
              // 右上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height && wstart == 0) {
              // 左下角

              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - 1 - hstart && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k - (3 - wend)];
                  }
                }
              }
            } else if (hend == input_height && wend == input_width) {
              // 右下角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1 &&
                      k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            } else if (hstart == 0) {
              // 顶部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height) {
              // 底部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }

            } else if (wstart == 0) {
              // 左侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width +
                                   (k - (3 - wend))];
                  }
                }
              }

            } else if (wend == input_width) {
              // 右侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            }
            for (int l = 0; l < 9; ++l) {
              result += fake_input[l] * filter1[l];
            }
            output_data[ph * output_width + pw] =
                newscale_data[c] * result + newbias_data[c];

            if (if_relu) {
              output_data[ph * output_width + pw] =
                  output_data[ph * output_width + pw] < 0
                      ? 0
                      : output_data[ph * output_width + pw];
            }
          } else {
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);

            const float32x4_t v_filter1 = vld1q_f32(filter1);
            const float32x4_t v_filter2 = vld1q_f32(filter2);
            const float32x4_t v_filter3 = vld1q_f32(filter3);
            float32x4_t mula = vmulq_f32(data1, v_filter1);
            mula = vmlaq_f32(mula, data2, v_filter2);
            mula = vmlaq_f32(mula, data3, v_filter3);
            float32x2_t res = vpadd_f32(
                vget_high_f32(vsetq_lane_f32(0, mula, 3)), vget_low_f32(mula));
            res = vpadd_f32(res, res);
            output_data[ph * output_width + pw] =
                vget_lane_f32(res, 0) * newscale_data[c] + newbias_data[c];

            if (if_relu) {
              output_data[ph * output_width + pw] =
                  output_data[ph * output_width + pw] < 0
                      ? 0
                      : output_data[ph * output_width + pw];
            }
          }
        }
      }
      input_data += input_channel_stride;
      output_data += output_channel_stride;
      filter_data += filter_channel_stride;
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
L
liuruilong 已提交
1257
#endif
1258
}
E
eclipsess 已提交
1259 1260 1261

void DepthwiseConv3x3s2p1v2(const Tensor *input, const Tensor *filter,
                            Tensor *output, Tensor bias, bool if_bias) {
1262
#if __ARM_NEON
E
eclipsess 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
  const float *bias_data = bias.data<float>();

  const int in_h = static_cast<int>(input->dims()[2]);
  const int in_w = static_cast<int>(input->dims()[3]);
  const int out_h = static_cast<int>(output->dims()[2]);
  const int out_w = static_cast<int>(output->dims()[3]);
  const int out_l = out_h;
  const int in_l = in_h;
  const int inhxw = in_h * in_w;
  const int outhxw = out_h * out_w;
  const int if_pad = in_l - 1 == (out_l - 1) * 2 ? 1 : 0;
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const float *input_row_ptr;
  float *output_row_ptr;

  const int w_times = (out_w - 2) / 3;

  float32x4_t vbias = vdupq_n_f32(0.0);

E
eclipsess 已提交
1286
  float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
E
eclipsess 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
  float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
  int out2in_mid;
  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = batch_size; b > 0; --b) {
    const float *filter_data_tmp = filter_data;
    for (int j = 0; j < c; ++j) {
      auto output_data_tmp = output_data + j * out_h * out_w;
      auto input_data_tmp = input_data + j * in_h * in_w;
      auto input_const = input_data_tmp;

      if (if_bias) {
        vbias = vdupq_n_f32(bias_data[j]);
      }

      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      int h_mid = 0;

      for (; h_mid < out_h - 1; h_mid++) {
        input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
        output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

        for (int w4 = 0; w4 < w_times + 1; w4++) {
          if (h_mid == 0) {
            elewise_res1 = zero;
            elewise_res0 = zero;
            elewise_res2 = zero;
          } else {
            elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
            elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
            elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
          }
          input_buff_mid = vld2q_f32(input_row_ptr);
          input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

          elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
          elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
          elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);

          res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                           vaddq_f32(elewise_res0, elewise_res1));
          res3 = vaddq_f32(res3, vbias);
          vst1q_f32(output_row_ptr, res3);

          input_row_ptr += 6;
          output_row_ptr += 3;
        }
      }
      clock();

      input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
      output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

      for (int w4 = 0; w4 < w_times + 1; w4++) {
        elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
        elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
        elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);

        input_buff_mid = vld2q_f32(input_row_ptr);
        input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

        elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
        elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
        elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

        if (!if_pad) {
          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);
        }
        res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                         vaddq_f32(elewise_res0, elewise_res1));
        res3 = vaddq_f32(res3, vbias);

        if ((w4 != w_times)) {
          vst1q_f32(output_row_ptr, res3);
        } else {
          if (out_l - 2 - w_times * 3 == 1) {
            vst1q_lane_f32(output_row_ptr, res3, 0);
          } else if (out_l - 2 - w_times * 3 == 2) {
            vst1q_lane_f32(output_row_ptr, res3, 0);
            vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          }
        }
        input_row_ptr += 6;
        output_row_ptr += 3;
      }

      output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
                           input_const[in_l] * w21 +
                           input_const[in_l + 1] * w22;

      out2in_mid = (out_l - 1) * 2;
      output_data_tmp[out_l - 1] =
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          w20 * input_const[out2in_mid + in_w - 1] +
          w21 * input_const[out2in_mid + in_w] +
          (1 - if_pad) * (w12 * input_const[out2in_mid + 1] +
                          w22 * input_const[out2in_mid + in_w + 1]);

      out2in_mid = (out_l - 1) * 2 * in_w;

      output_data_tmp[out_l * (out_l - 1)] =
          w01 * input_const[out2in_mid - in_w] +
          w02 * input_const[out2in_mid - in_w + 1] +
          w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid + 1] +
          (1 - if_pad) * (w21 * input_const[out2in_mid + in_w] +
                          w22 * input_const[out2in_mid + in_w + 1]);
      out2in_mid = (out_l - 1) * 2 * in_w + (out_l - 1) * 2;

      output_data_tmp[out_l * out_l - 1] =
          w00 * input_const[out2in_mid - in_w - 1] +
          w01 * input_const[out2in_mid - in_w] +
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          (1 - if_pad) * (w20 * input_const[out2in_mid + in_w - 1] +
                          w21 * input_const[out2in_mid + in_w] +
                          w02 * input_const[out2in_mid - in_w + 1] +
                          w12 * input_const[out2in_mid + 1] +
                          w22 * input_const[out2in_mid + in_w + 1]);
      if (if_bias) {
        output_data_tmp[0] += bias_data[j];
        output_data_tmp[out_l - 1] += bias_data[j];
        output_data_tmp[out_l * (out_l - 1)] += bias_data[j];
        output_data_tmp[out_l * out_l - 1] += bias_data[j];
      }
      for (int i = 1; i < out_h - 1; i++) {
        out2in_mid = i * 2 * in_w;
        output_data_tmp[i * out_l] = w01 * input_const[out2in_mid - in_w] +
                                     w02 * input_const[out2in_mid - in_w + 1] +
                                     w11 * input_const[out2in_mid] +
                                     w12 * input_const[out2in_mid + 1] +
                                     w21 * input_const[out2in_mid + in_w] +
                                     w22 * input_const[out2in_mid + in_w + 1];

        out2in_mid = i * 2 * in_w + (out_l - 1) * 2;
        output_data_tmp[i * out_l + out_l - 1] =
            w00 * input_const[out2in_mid - in_w - 1] +
            w01 * input_const[out2in_mid - in_w] +
            w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
            w20 * input_const[out2in_mid + in_w - 1] +
            w21 * input_const[out2in_mid + in_w] +
            (1 - if_pad) * (w02 * input_const[out2in_mid - in_w + 1] +
                            w12 * input_const[out2in_mid + 1] +
                            w22 * input_const[out2in_mid + in_w + 1]);
        if (if_bias) {
          output_data_tmp[i * out_l] += bias_data[j];
          output_data_tmp[i * out_l + out_l - 1] += bias_data[j];
        }
      }
      filter_data_tmp += 9;
    }
    input_data += inhxw * c;
    output_data += outhxw * c;
  }
L
liuruilong 已提交
1459
#endif
E
eclipsess 已提交
1460 1461 1462 1463 1464
}

void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
                                     Tensor *output, const Tensor *new_scale,
                                     const Tensor *new_bias, bool if_relu) {
1465
#if __ARM_NEON
1466
  // #ifdef _OPENMP
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
  //  const float *newscale_data = new_scale->data<float>();
  //  const float *newbias_data = new_bias->data<float>();
  //
  //  const int batch_size = static_cast<int>(input->dims()[0]);
  //  const int input_channel = static_cast<int>(input->dims()[1]);
  //
  //  const int input_height = static_cast<int>(input->dims()[2]);
  //  const int input_width = static_cast<int>(input->dims()[3]);
  //  const int output_height = static_cast<int>(output->dims()[2]);
  //  const int output_width = static_cast<int>(output->dims()[3]);
  //  const int inhxw = input_height * input_width;
  //  const int outhxw = output_height * output_width;
  //
  //  float32x4_t zero = vdupq_n_f32(0.0);
  //  for (int b = 0; b < batch_size; b++) {
  //    #pragma omp parallel for
  //    for (int c = 0; c < input_channel; c++) {
  //      const float *filter_data = filter->data<float>() + c * 9;
  //      const float *input_data = input->data<float>() + c * inhxw;
  //      float *output_data = output->data<float>() + c * outhxw;
  //      float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
  //      float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
  //
  //      float w00 = filter_data[0];
  //      float w01 = filter_data[1];
  //      float w02 = filter_data[2];
  //      float w10 = filter_data[3];
  //      float w11 = filter_data[4];
  //      float w12 = filter_data[5];
  //      float w20 = filter_data[6];
  //      float w21 = filter_data[7];
  //      float w22 = filter_data[8];
  //
  //      int m;
  //      for (m = 1; m < output_width - 2; m = m + 3) {
  //        float *output_ptr = output_data + m;
  //        float32x4x2_t input_buff_mid{}, input_buff_bottom{};
  //        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
  //        input_buff_mid = vld2q_f32(input_data + (2 * m - 1));
  //        input_buff_bottom = vld2q_f32(input_data + input_width + (2 * m -
  //        1));
  //
  //        in0 = input_buff_mid.val[0];
  //        tmp0 = input_buff_mid.val[1];
  //        tmp1 = vextq_f32(in0, zero, 1);
  //
  //        in2 = input_buff_bottom.val[0];
  //        tmp2 = input_buff_bottom.val[1];
  //        tmp3 = vextq_f32(in2, zero, 1);
  //
  //        out0 = vmulq_n_f32(in0, w10);
  //        out0 = vmlaq_n_f32(out0, tmp0, w11);
  //        out0 = vmlaq_n_f32(out0, tmp1, w12);
  //        out0 = vmlaq_n_f32(out0, in2, w20);
  //        out0 = vmlaq_n_f32(out0, tmp2, w21);
  //        out0 = vmlaq_n_f32(out0, tmp3, w22);
  //        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
  //        if (if_relu) {
  //          out0 = vmaxq_f32(out0, zero);
  //        }
  //        vst1q_lane_f32(output_ptr, out0, 0);
  //        vst1q_lane_f32(output_ptr + 1, out0, 1);
  //        vst1q_lane_f32(output_ptr + 2, out0, 2);
  //      }
  //      for (m = 1; m < output_width - 2; m += 3) {
  //      }
  //      for (int j = m; j < output_width; j++) {
  //        output_data[j] = input_data[2 * j - 1] * w10 + input_data[2 * j] *
  //        w11 +
  //                         input_data[2 * j + 1] * w12 +
  //                         input_data[2 * j - 1 + input_width] * w20 +
  //                         input_data[2 * j + input_width] * w21 +
  //                         input_data[2 * j + 1 + input_width] * w22;
  //        output_data[j] = newscale_data[c] * output_data[j] +
  //        newbias_data[c]; if (if_relu) {
  //          output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
  //        }
  //      }
  //
  //      for (int i = 1; i < output_height; i += 1) {
  //        for (int m = 1; m < output_width - 2; m += 3) {
  //          float *output_ptr = output_data + i * output_width + m;
  //          float32x4x2_t input_buff_top{}, input_buff_mid{},
  //          input_buff_bottom{}; float32x4_t in0, in1, in2, in3, in4, in5,
  //          tmp0, tmp1, tmp2, tmp3,
  //              tmp4, tmp5, out0;
  //          input_buff_top =
  //              vld2q_f32(input_data + (2 * i - 1) * input_width + (2 * m -
  //              1));
  //          input_buff_mid =
  //              vld2q_f32(input_data + (2 * i) * input_width + (2 * m - 1));
  //          input_buff_bottom =
  //              vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m -
  //              1));
  //
  //          in0 = input_buff_top.val[0];
  //          tmp0 = input_buff_top.val[1];
  //          tmp1 = vextq_f32(in0, zero, 1);
  //
  //          in2 = input_buff_mid.val[0];
  //          tmp2 = input_buff_mid.val[1];
  //          tmp3 = vextq_f32(in2, zero, 1);
  //
  //          in4 = input_buff_bottom.val[0];
  //          tmp4 = input_buff_bottom.val[1];
  //          tmp5 = vextq_f32(in4, zero, 1);
  //
  //          out0 = vmulq_n_f32(in0, w00);
  //          out0 = vmlaq_n_f32(out0, tmp0, w01);
  //          out0 = vmlaq_n_f32(out0, tmp1, w02);
  //          out0 = vmlaq_n_f32(out0, in2, w10);
  //          out0 = vmlaq_n_f32(out0, tmp2, w11);
  //          out0 = vmlaq_n_f32(out0, tmp3, w12);
  //          out0 = vmlaq_n_f32(out0, in4, w20);
  //          out0 = vmlaq_n_f32(out0, tmp4, w21);
  //          out0 = vmlaq_n_f32(out0, tmp5, w22);
  //          out0 = vmlaq_f32(vnewbias, vnewscale, out0);
  //          if (if_relu) {
  //            out0 = vmaxq_f32(out0, zero);
  //          }
  //          vst1q_lane_f32(output_ptr, out0, 0);
  //          vst1q_lane_f32(output_ptr + 1, out0, 1);
  //          vst1q_lane_f32(output_ptr + 2, out0, 2);
  //        }
  //        int m;
  //        for (m = 1; m < output_width - 2; m += 3) {
  //        }
  //        for (int j = m; j < output_width; j++) {
  //          output_data[i * output_width + j] =
  //              input_data[(2 * i - 1) * input_width + 2 * j - 1] * w00 +
  //              input_data[(2 * i - 1) * input_width + 2 * j] * w01 +
  //              input_data[(2 * i - 1) * input_width + 2 * j + 1] * w02 +
  //              input_data[(2 * i) * input_width + 2 * j - 1] * w10 +
  //              input_data[(2 * i) * input_width + 2 * j] * w11 +
  //              input_data[(2 * i) * input_width + 2 * j + 1] * w12 +
  //              input_data[(2 * i + 1) * input_width + 2 * j - 1] * w20 +
  //              input_data[(2 * i + 1) * input_width + 2 * j] * w21 +
  //              input_data[(2 * i + 1) * input_width + 2 * j + 1] * w22;
  //          output_data[i * output_width + j] =
  //              newscale_data[c] * output_data[i * output_width + j] +
  //              newbias_data[c];
  //          if (if_relu) {
  //            output_data[i * output_width + j] =
  //                output_data[i * output_width + j] < 0
  //                    ? 0
  //                    : output_data[i * output_width + j];
  //          }
  //        }
  //      }
  //      output_data[0] = input_data[0] * w11 + input_data[1] * w12 +
  //                       input_data[input_height] * w21 +
  //                       input_data[input_height + 1] * w22;
  //
  //      output_data[0] = newscale_data[c] * output_data[0] + newbias_data[c];
  //      if (if_relu) {
  //        output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
  //      }
  //      for (int i = 1; i < output_height; i++) {
  //        output_data[i * output_width] =
  //            input_data[(2 * i - 1) * input_width] * w01 +
  //            input_data[(2 * i - 1) * input_width + 1] * w02 +
  //            input_data[(2 * i) * input_width] * w11 +
  //            input_data[(2 * i) * input_width + 1] * w12 +
  //            input_data[(2 * i + 1) * input_width] * w21 +
  //            input_data[(2 * i + 1) * input_width + 1] * w22;
  //
  //        output_data[i * output_width] =
  //            newscale_data[c] * output_data[i * output_width] +
  //            newbias_data[c];
  //        if (if_relu) {
  //          output_data[i * output_width] = output_data[i * output_width] < 0
  //                                              ? 0
  //                                              : output_data[i *
  //                                              output_width];
  //        }
  //      }
  //    }
  //  }
  //
1646
  // #else
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const int in_h = static_cast<int>(input->dims()[2]);
  const int in_w = static_cast<int>(input->dims()[3]);
  const int out_h = static_cast<int>(output->dims()[2]);
  const int out_w = static_cast<int>(output->dims()[3]);
  const int out_l = out_h;
  const int in_l = in_h;
  const int inhxw = in_h * in_w;
  const int outhxw = out_h * out_w;
  const int if_pad = in_l - 1 == (out_l - 1) * 2 ? 1 : 0;
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const int w_times = (out_w - 2) / 3;
  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = batch_size; b > 0; --b) {
1668
#pragma omp parallel for
1669 1670 1671 1672 1673 1674 1675 1676
    for (int j = 0; j < c; j++) {
      const float *input_row_ptr;
      float *output_row_ptr;
      float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
      float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
      int out2in_mid;
      float32x4_t vnewbias = vdupq_n_f32(0.0);
      float32x4_t vnewscale = vdupq_n_f32(1.0);
1677 1678 1679
      auto output_data_tmp = output_data + j * out_h * out_w;
      auto input_data_tmp = input_data + j * in_h * in_w;
      auto input_const = input_data_tmp;
1680
      const float *filter_data_tmp = filter_data + 9 * j;
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
      vnewbias = vdupq_n_f32(newbias_data[j]);
      vnewscale = vdupq_n_f32(newscale_data[j]);

      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      int h_mid = 0;

      for (; h_mid < out_h - 1; h_mid++) {
        input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
        output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

        for (int w4 = 0; w4 < w_times + 1; w4++) {
          if (h_mid == 0) {
            elewise_res1 = zero;
            elewise_res0 = zero;
            elewise_res2 = zero;
          } else {
            elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
            elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
            elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
          }
          input_buff_mid = vld2q_f32(input_row_ptr);
          input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

          elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
          elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
          elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);

          res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                           vaddq_f32(elewise_res0, elewise_res1));
          res3 = vmlaq_f32(vnewbias, vnewscale, res3);

          if (if_relu) {
            res3 = vmaxq_f32(res3, zero);
          }
1731 1732 1733
          vst1q_lane_f32(output_row_ptr, res3, 0);
          vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          vst1q_lane_f32(output_row_ptr + 2, res3, 2);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

          input_row_ptr += 6;
          output_row_ptr += 3;
        }
      }
      clock();

      input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
      output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

      for (int w4 = 0; w4 < w_times + 1; w4++) {
        elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
        elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
        elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);

        input_buff_mid = vld2q_f32(input_row_ptr);
        input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

        elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
        elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
        elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

        if (!if_pad) {
          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);
        }
        res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                         vaddq_f32(elewise_res0, elewise_res1));
        res3 = vmlaq_f32(vnewbias, vnewscale, res3);

        if (if_relu) {
          res3 = vmaxq_f32(res3, zero);
        }
        if ((w4 != w_times)) {
1772 1773 1774
          vst1q_lane_f32(output_row_ptr, res3, 0);
          vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          vst1q_lane_f32(output_row_ptr + 2, res3, 2);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
        } else {
          if (out_l - 2 - w_times * 3 == 1) {
            vst1q_lane_f32(output_row_ptr, res3, 0);
          } else if (out_l - 2 - w_times * 3 == 2) {
            vst1q_lane_f32(output_row_ptr, res3, 0);
            vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          }
        }
        input_row_ptr += 6;
        output_row_ptr += 3;
      }

      output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
                           input_const[in_l] * w21 +
                           input_const[in_l + 1] * w22;

      out2in_mid = (out_l - 1) * 2;
      output_data_tmp[out_l - 1] =
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          w20 * input_const[out2in_mid + in_w - 1] +
          w21 * input_const[out2in_mid + in_w] +
          (1 - if_pad) * (w12 * input_const[out2in_mid + 1] +
                          w22 * input_const[out2in_mid + in_w + 1]);

      out2in_mid = (out_l - 1) * 2 * in_w;

      output_data_tmp[out_l * (out_l - 1)] =
          w01 * input_const[out2in_mid - in_w] +
          w02 * input_const[out2in_mid - in_w + 1] +
          w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid + 1] +
          (1 - if_pad) * (w21 * input_const[out2in_mid + in_w] +
                          w22 * input_const[out2in_mid + in_w + 1]);
      out2in_mid = (out_l - 1) * 2 * in_w + (out_l - 1) * 2;

      output_data_tmp[out_l * out_l - 1] =
          w00 * input_const[out2in_mid - in_w - 1] +
          w01 * input_const[out2in_mid - in_w] +
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          (1 - if_pad) * (w20 * input_const[out2in_mid + in_w - 1] +
                          w21 * input_const[out2in_mid + in_w] +
                          w02 * input_const[out2in_mid - in_w + 1] +
                          w12 * input_const[out2in_mid + 1] +
                          w22 * input_const[out2in_mid + in_w + 1]);
      output_data_tmp[0] =
          output_data_tmp[0] * newscale_data[j] + newbias_data[j];
      output_data_tmp[out_l - 1] =
          output_data_tmp[out_l - 1] * newscale_data[j] + newbias_data[j];
      output_data_tmp[out_l * (out_l - 1)] =
          output_data_tmp[out_l * (out_l - 1)] * newscale_data[j] +
          newbias_data[j];
      output_data_tmp[out_l * out_l - 1] =
          output_data_tmp[out_l * out_l - 1] * newscale_data[j] +
          newbias_data[j];
      if (if_relu) {
        output_data_tmp[0] = output_data_tmp[0] < 0 ? 0 : output_data_tmp[0];
        output_data_tmp[out_l - 1] =
            output_data_tmp[out_l - 1] < 0 ? 0 : output_data_tmp[out_l - 1];
        output_data_tmp[out_l * (out_l - 1)] =
            output_data_tmp[out_l * (out_l - 1)] < 0
                ? 0
                : output_data_tmp[out_l * (out_l - 1)];
        output_data_tmp[out_l * out_l - 1] =
            output_data_tmp[out_l * out_l - 1] < 0
                ? 0
                : output_data_tmp[out_l * out_l - 1];
      }
      for (int i = 1; i < out_h - 1; i++) {
        out2in_mid = i * 2 * in_w;
        output_data_tmp[i * out_l] = w01 * input_const[out2in_mid - in_w] +
                                     w02 * input_const[out2in_mid - in_w + 1] +
                                     w11 * input_const[out2in_mid] +
                                     w12 * input_const[out2in_mid + 1] +
                                     w21 * input_const[out2in_mid + in_w] +
                                     w22 * input_const[out2in_mid + in_w + 1];
1849

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        out2in_mid = i * 2 * in_w + (out_l - 1) * 2;
        output_data_tmp[i * out_l + out_l - 1] =
            w00 * input_const[out2in_mid - in_w - 1] +
            w01 * input_const[out2in_mid - in_w] +
            w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
            w20 * input_const[out2in_mid + in_w - 1] +
            w21 * input_const[out2in_mid + in_w] +
            (1 - if_pad) * (w02 * input_const[out2in_mid - in_w + 1] +
                            w12 * input_const[out2in_mid + 1] +
                            w22 * input_const[out2in_mid + in_w + 1]);
        output_data_tmp[i * out_l] =
            output_data_tmp[i * out_l] * newscale_data[j] + newbias_data[j];
        output_data_tmp[i * out_l + out_l - 1] =
            output_data_tmp[i * out_l + out_l - 1] * newscale_data[j] +
            newbias_data[j];
        if (if_relu) {
          output_data_tmp[i * out_l] =
              output_data_tmp[i * out_l] < 0 ? 0 : output_data_tmp[i * out_l];
          output_data_tmp[i * out_l + out_l - 1] =
              output_data_tmp[i * out_l + out_l - 1] < 0
                  ? 0
                  : output_data_tmp[i * out_l + out_l - 1];
        }
      }
    }
    input_data += inhxw * c;
    output_data += outhxw * c;
  }
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
// #endif
#endif
}

void DepthwiseConv3x3s2p0(const Tensor *input, const Tensor *filter,
                          Tensor *output, Tensor bias, bool if_bias) {
#if __ARM_NEON

  const int batch_size = static_cast<int>(input->dims()[0]);
  const int input_channel = static_cast<int>(input->dims()[1]);

  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);
  const int inhxw = input_height * input_width;
  const int outhxw = output_height * output_width;

  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = 0; b < batch_size; b++) {
#pragma omp parallel for
    for (int c = 0; c < input_channel; c++) {
      const float *filter_data = filter->data<float>() + c * 9;
      const float *input_data = input->data<float>() + c * inhxw;
1902
      const float *bias_data = bias.data<float>() + c;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
      float *output_data = output->data<float>() + c * outhxw;
      float w00 = filter_data[0];
      float w01 = filter_data[1];
      float w02 = filter_data[2];
      float w10 = filter_data[3];
      float w11 = filter_data[4];
      float w12 = filter_data[5];
      float w20 = filter_data[6];
      float w21 = filter_data[7];
      float w22 = filter_data[8];
1913
      float32x4_t biasv = vld1q_dup_f32(bias_data);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
      for (int i = 0; i < output_height; i += 1) {
        for (int m = 0; m < output_width - 2; m += 3) {
          float *output_ptr = output_data + i * output_width + m;
          float32x4x2_t input_buff_top{}, input_buff_mid{}, input_buff_bottom{};
          float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3,
              tmp4, tmp5, out0;
          input_buff_top =
              vld2q_f32(input_data + (2 * i) * input_width + (2 * m));
          input_buff_mid =
              vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m));
          input_buff_bottom =
              vld2q_f32(input_data + (2 * i + 2) * input_width + (2 * m));

          in0 = input_buff_top.val[0];
          tmp0 = input_buff_top.val[1];
          tmp1 = vextq_f32(in0, zero, 1);

          in2 = input_buff_mid.val[0];
          tmp2 = input_buff_mid.val[1];
          tmp3 = vextq_f32(in2, zero, 1);

          in4 = input_buff_bottom.val[0];
          tmp4 = input_buff_bottom.val[1];
          tmp5 = vextq_f32(in4, zero, 1);

          out0 = vmulq_n_f32(in0, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);
1948 1949 1950
          if (if_bias) {
            out0 = vaddq_f32(out0, biasv);
          }
1951 1952 1953 1954 1955 1956 1957 1958 1959
          vst1q_lane_f32(output_ptr, out0, 0);
          vst1q_lane_f32(output_ptr + 1, out0, 1);
          vst1q_lane_f32(output_ptr + 2, out0, 2);
        }
        int m;
        for (m = 0; m < output_width - 2; m += 3) {
        }
        for (int j = m; j < output_width; j++) {
          output_data[i * output_width + j] =
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
              input_data[(2 * i) * input_width + 2 * j] * w00 +
              input_data[(2 * i) * input_width + 2 * j + 1] * w01 +
              input_data[(2 * i) * input_width + 2 * j + 2] * w02 +
              input_data[(2 * i + 1) * input_width + 2 * j] * w10 +
              input_data[(2 * i + 1) * input_width + 2 * j + 1] * w11 +
              input_data[(2 * i + 1) * input_width + 2 * j + 2] * w12 +
              input_data[(2 * i + 2) * input_width + 2 * j] * w20 +
              input_data[(2 * i + 2) * input_width + 2 * j + 1] * w21 +
              input_data[(2 * i + 2) * input_width + 2 * j + 2] * w22;
          if (if_bias) {
            output_data[i * output_width + j] += *bias_data;
          }
1972 1973 1974 1975 1976
        }
      }
    }
  }

L
liuruilong 已提交
1977
#endif
E
eclipsess 已提交
1978 1979
}

W
wangliu 已提交
1980 1981 1982
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile