提交 cb44f357 编写于 作者: E eclipsess

format

上级 9942f5ba
......@@ -60,8 +60,7 @@ std::unordered_map<
{G_OP_TYPE_TRANSPOSE, {{"X"}, {"Out"}}},
{G_OP_TYPE_BOX_CODER,
{{"PriorBox", "PriorBoxVar", "TargetBox"}, {"OutputBox"}}},
{G_OP_TYPE_FUSION_CONV_ADD_BN_RELU,
{{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_ADD_BN_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}},
{G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}},
{G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}},
......
......@@ -42,12 +42,14 @@ class FusionConvAddBNReluMatcher : public framework::FusionOpMatcher {
std::vector<std::shared_ptr<framework::Node>> *removed_nodes) {
vector<std::shared_ptr<framework::OpDesc>> origin_descs =
node->OpDescs(node_.Depth());
node->Folder(node_.Depth(), Type(),
{ {G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"}}},
{G_OP_TYPE_BATCHNORM, {{"Scale", "Scale"},
{"Mean", "Mean"},
{"Bias", "Bias"},
{"Variance", "Variance"}}}}, removed_nodes);
node->Folder(node_.Depth(), Type(),
{{G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"}}},
{G_OP_TYPE_BATCHNORM,
{{"Scale", "Scale"},
{"Mean", "Mean"},
{"Bias", "Bias"},
{"Variance", "Variance"}}}},
removed_nodes);
}
std::string Type() { return G_OP_TYPE_FUSION_CONV_ADD_BN_RELU; }
......@@ -78,7 +80,7 @@ class FusionConvAddBNReluOp
#ifdef PADDLE_MOBILE_CPU
//#ifndef FUSION_CONV_ADD_BN_RELU_REGISTER
//static framework::FusionOpRegistrar fusion_conv_add_bn_relu_registrar(
// static framework::FusionOpRegistrar fusion_conv_add_bn_relu_registrar(
// new FusionConvAddBNReluMatcher());
//#define FUSION_CONV_ADD_BN_RELU_REGISTER
//#endif
......
......@@ -53,7 +53,7 @@ void BatchnormCompute(const BatchNormParam &param) {
"C must equal to variance.numel()");
int HXW = H * W;
if (0&&HXW > 32) {
if (0 && HXW > 32) {
int NXC = N * C;
float *inv_std_ptr = new float[NXC * 4];
float *volatile new_scale_ptr = new float[NXC * 4];
......@@ -222,15 +222,14 @@ void BatchnormCompute(const BatchNormParam &param) {
}
}
}
}
}
// for(int i = 0; i < new_scale.numel(); i++){
// std::cout << "new_scale " << new_scale_ptr[i] <<std::endl;
// }
// for(int i = 0; i < new_bias.numel(); i++){
// std::cout << "new_bias " << new_bias_ptr[i] <<std::endl;
// }
// for(int i = 0; i < new_scale.numel(); i++){
// std::cout << "new_scale " << new_scale_ptr[i] <<std::endl;
// }
// for(int i = 0; i < new_bias.numel(); i++){
// std::cout << "new_bias " << new_bias_ptr[i] <<std::endl;
// }
delete[] inv_std_ptr;
}
......
......@@ -15,8 +15,8 @@ limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#pragma once
#include "operators/math/depthwiseconv3x3s1p1.h"
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include "operators/math/depthwiseconv3x3s1p1.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
......@@ -130,11 +130,12 @@ void ConvAddBNReluCompute(const FusionConvAddBNReluParam &param) {
}
auto output_ptr = output->data<float>();
for (int c = 0; c < output_matrix_shape[0]; c++){
for (int c = 0; c < output_matrix_shape[0]; c++) {
// int start = c * output_matrix_shape[1];
for (int j = 0; j < output_matrix_shape[1]; j++){
// output_ptr[start + j] = output_ptr[start +j]*new_scale_ptr[c]+new_bias_ptr[c];
// output_ptr[start + j] = output_ptr[start+j]< 0 ? 0 : output_ptr[start +j];
for (int j = 0; j < output_matrix_shape[1]; j++) {
// output_ptr[start + j] = output_ptr[start
// +j]*new_scale_ptr[c]+new_bias_ptr[c]; output_ptr[start + j] =
// output_ptr[start+j]< 0 ? 0 : output_ptr[start +j];
}
}
}
......
......@@ -128,7 +128,7 @@ class AclBatchNormOp : public acl::ACLOperator {
};
template <>
bool BatchNormKernel<GPU_MALI, float>::Init(BatchNormParam *param) const {
bool BatchNormKernel<GPU_MALI, float>::Init(BatchNormParam* param) const {
AclBatchNormOp<GPU_MALI, float>* acl_op =
reinterpret_cast<AclBatchNormOp<GPU_MALI, float>*>(this->GetAclOp());
if (acl_op == nullptr) {
......
......@@ -195,7 +195,7 @@ class AclConvOp : public acl::ACLOperator {
};
template <>
bool ConvKernel<GPU_MALI, float>::Init(ConvParam *param) const {
bool ConvKernel<GPU_MALI, float>::Init(ConvParam* param) const {
AclConvOp<GPU_MALI, float>* acl_op =
reinterpret_cast<AclConvOp<GPU_MALI, float>*>(this->GetAclOp());
if (acl_op == nullptr) {
......
......@@ -27,7 +27,8 @@ struct AddFunctor {
};
template <>
bool ElementwiseAddKernel<GPU_MALI, float>::Init(ElementwiseAddParam *param) const {
bool ElementwiseAddKernel<GPU_MALI, float>::Init(
ElementwiseAddParam *param) const {
return true;
}
......
......@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/math/depthwise_conv_3x3.h"
#include <vector>
#include <arm_neon.h>
#include <vector>
namespace paddle_mobile {
namespace operators {
......
......@@ -66,10 +66,11 @@ void DepthwiseConv3x3s1p1(const Tensor *input, Tensor filter, Tensor *output,
float w21 = filter_data_tmp[7];
float w22 = filter_data_tmp[8];
output_data[0] =(w11 * input_data[0] + w12 * input_data[1] + w21 * input_data[l] +
w22 * input_data[l + 1] + bias_data[j]) *
newscale_data[j] +
newbias_data[j];
output_data[0] =
(w11 * input_data[0] + w12 * input_data[1] + w21 * input_data[l] +
w22 * input_data[l + 1] + bias_data[j]) *
newscale_data[j] +
newbias_data[j];
output_data[l - 1] = (w10 * input_data[l - 2] + w11 * input_data[l - 1] +
w20 * input_data[2 * l - 2] +
w21 * input_data[2 * l - 1] + bias_data[j]) *
......@@ -88,11 +89,13 @@ void DepthwiseConv3x3s1p1(const Tensor *input, Tensor filter, Tensor *output,
w11 * input_data[l * l - 1] + bias_data[j]) *
newscale_data[j] +
newbias_data[j];
if(if_relu){
if (if_relu) {
output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
output_data[l-1] = output_data[l-1] < 0 ? 0 : output_data[l-1];
output_data[(l-1)*l] = output_data[(l-1)*l] < 0 ? 0 : output_data[(l-1)*l];
output_data[l * l - 1] = output_data[l * l - 1] < 0 ? 0 : output_data[l * l - 1];
output_data[l - 1] = output_data[l - 1] < 0 ? 0 : output_data[l - 1];
output_data[(l - 1) * l] =
output_data[(l - 1) * l] < 0 ? 0 : output_data[(l - 1) * l];
output_data[l * l - 1] =
output_data[l * l - 1] < 0 ? 0 : output_data[l * l - 1];
}
for (int i = 1; i < l - 1; ++i) {
output_data[i * l] =
......@@ -111,9 +114,10 @@ void DepthwiseConv3x3s1p1(const Tensor *input, Tensor filter, Tensor *output,
w21 * input_data[i * l + l - 1 + l] + bias_data[j]) *
newscale_data[j] +
newbias_data[j];
if(if_relu){
if (if_relu) {
output_data[i * l] = output_data[i * l] < 0 ? 0 : output_data[i * l];
output_data[i * l + l - 1] = output_data[i * l + l - 1] < 0 ? 0 : output_data[i * l + l - 1];
output_data[i * l + l - 1] =
output_data[i * l + l - 1] < 0 ? 0 : output_data[i * l + l - 1];
}
}
......@@ -332,7 +336,6 @@ void DepthwiseConv3x3s1p1(const Tensor *input, Tensor filter, Tensor *output,
filter_data_tmp += 9;
}
}
}
} // namespace math
} // namespace operators
......
......@@ -823,9 +823,9 @@ class FusionConvAddParam : public OpParam {
const int &Groups() const { return groups; }
void Set(Tensor *t) {t_ = t;}
void Set(Tensor *t) { t_ = t; }
const Tensor *Get() const {return t_;}
const Tensor *Get() const { return t_; }
protected:
Tensor *bias_;
......@@ -837,7 +837,7 @@ class FusionConvAddParam : public OpParam {
vector<int> paddings_;
vector<int> dilations_;
int groups;
Tensor *t_;
Tensor *t_;
};
Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册