Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
85210c6b
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
85210c6b
编写于
9月 11, 2018
作者:
Y
yangfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
repair bug of multithreading depthwise_conv3x3(s2)
上级
efa4963e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
198 addition
and
191 deletion
+198
-191
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+198
-191
未找到文件。
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
85210c6b
...
...
@@ -1465,180 +1465,187 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
#if __ARM_NEON
#ifdef _OPENMP
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
input_channel
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
input_height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
input_width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
output_height
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
output_width
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
inhxw
=
input_height
*
input_width
;
const
int
outhxw
=
output_height
*
output_width
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
input_channel
;
c
++
)
{
const
float
*
filter_data
=
filter
->
data
<
float
>
()
+
c
*
9
;
const
float
*
input_data
=
input
->
data
<
float
>
()
+
c
*
inhxw
;
float
*
output_data
=
output
->
data
<
float
>
()
+
c
*
outhxw
;
float32x4_t
vnewbias
=
vdupq_n_f32
(
newbias_data
[
c
]);
float32x4_t
vnewscale
=
vdupq_n_f32
(
newscale_data
[
c
]);
float
w00
=
filter_data
[
0
];
float
w01
=
filter_data
[
1
];
float
w02
=
filter_data
[
2
];
float
w10
=
filter_data
[
3
];
float
w11
=
filter_data
[
4
];
float
w12
=
filter_data
[
5
];
float
w20
=
filter_data
[
6
];
float
w21
=
filter_data
[
7
];
float
w22
=
filter_data
[
8
];
int
m
;
for
(
m
=
1
;
m
<
output_width
-
2
;
m
=
m
+
3
)
{
float
*
output_ptr
=
output_data
+
m
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
{};
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
input_buff_mid
=
vld2q_f32
(
input_data
+
(
2
*
m
-
1
));
input_buff_bottom
=
vld2q_f32
(
input_data
+
input_width
+
(
2
*
m
-
1
));
in0
=
input_buff_mid
.
val
[
0
];
tmp0
=
input_buff_mid
.
val
[
1
];
tmp1
=
vextq_f32
(
in0
,
zero
,
1
);
in2
=
input_buff_bottom
.
val
[
0
];
tmp2
=
input_buff_bottom
.
val
[
1
];
tmp3
=
vextq_f32
(
in2
,
zero
,
1
);
out0
=
vmulq_n_f32
(
in0
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
vst1q_lane_f32
(
output_ptr
,
out0
,
0
);
vst1q_lane_f32
(
output_ptr
+
1
,
out0
,
1
);
vst1q_lane_f32
(
output_ptr
+
2
,
out0
,
2
);
}
for
(
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
}
for
(
int
j
=
m
;
j
<
output_width
;
j
++
)
{
output_data
[
j
]
=
input_data
[
2
*
j
-
1
]
*
w10
+
input_data
[
2
*
j
]
*
w11
+
input_data
[
2
*
j
+
1
]
*
w12
+
input_data
[
2
*
j
-
1
+
input_width
]
*
w20
+
input_data
[
2
*
j
+
input_width
]
*
w21
+
input_data
[
2
*
j
+
1
+
input_width
]
*
w22
;
output_data
[
j
]
=
newscale_data
[
c
]
*
output_data
[
j
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
j
]
=
output_data
[
j
]
<
0
?
0
:
output_data
[
j
];
}
}
for
(
int
i
=
1
;
i
<
output_height
;
i
+=
1
)
{
for
(
int
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
float
*
output_ptr
=
output_data
+
i
*
output_width
+
m
;
float32x4x2_t
input_buff_top
{},
input_buff_mid
{},
input_buff_bottom
{};
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
out0
;
input_buff_top
=
vld2q_f32
(
input_data
+
(
2
*
i
-
1
)
*
input_width
+
(
2
*
m
-
1
));
input_buff_mid
=
vld2q_f32
(
input_data
+
(
2
*
i
)
*
input_width
+
(
2
*
m
-
1
));
input_buff_bottom
=
vld2q_f32
(
input_data
+
(
2
*
i
+
1
)
*
input_width
+
(
2
*
m
-
1
));
in0
=
input_buff_top
.
val
[
0
];
tmp0
=
input_buff_top
.
val
[
1
];
tmp1
=
vextq_f32
(
in0
,
zero
,
1
);
in2
=
input_buff_mid
.
val
[
0
];
tmp2
=
input_buff_mid
.
val
[
1
];
tmp3
=
vextq_f32
(
in2
,
zero
,
1
);
in4
=
input_buff_bottom
.
val
[
0
];
tmp4
=
input_buff_bottom
.
val
[
1
];
tmp5
=
vextq_f32
(
in4
,
zero
,
1
);
out0
=
vmulq_n_f32
(
in0
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in4
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
zero
);
}
vst1q_lane_f32
(
output_ptr
,
out0
,
0
);
vst1q_lane_f32
(
output_ptr
+
1
,
out0
,
1
);
vst1q_lane_f32
(
output_ptr
+
2
,
out0
,
2
);
}
int
m
;
for
(
m
=
1
;
m
<
output_width
-
2
;
m
+=
3
)
{
}
for
(
int
j
=
m
;
j
<
output_width
;
j
++
)
{
output_data
[
i
*
output_width
+
j
]
=
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
-
1
]
*
w00
+
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
]
*
w01
+
input_data
[(
2
*
i
-
1
)
*
input_width
+
2
*
j
+
1
]
*
w02
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
-
1
]
*
w10
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
]
*
w11
+
input_data
[(
2
*
i
)
*
input_width
+
2
*
j
+
1
]
*
w12
+
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
-
1
]
*
w20
+
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
]
*
w21
+
input_data
[(
2
*
i
+
1
)
*
input_width
+
2
*
j
+
1
]
*
w22
;
output_data
[
i
*
output_width
+
j
]
=
newscale_data
[
c
]
*
output_data
[
i
*
output_width
+
j
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
i
*
output_width
+
j
]
=
output_data
[
i
*
output_width
+
j
]
<
0
?
0
:
output_data
[
i
*
output_width
+
j
];
}
}
}
output_data
[
0
]
=
input_data
[
0
]
*
w11
+
input_data
[
1
]
*
w12
+
input_data
[
input_height
]
*
w21
+
input_data
[
input_height
+
1
]
*
w22
;
output_data
[
0
]
=
newscale_data
[
c
]
*
output_data
[
0
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
0
]
=
output_data
[
0
]
<
0
?
0
:
output_data
[
0
];
}
for
(
int
i
=
1
;
i
<
output_height
;
i
++
)
{
output_data
[
i
*
output_width
]
=
input_data
[(
2
*
i
-
1
)
*
input_width
]
*
w01
+
input_data
[(
2
*
i
-
1
)
*
input_width
+
1
]
*
w02
+
input_data
[(
2
*
i
)
*
input_width
]
*
w11
+
input_data
[(
2
*
i
)
*
input_width
+
1
]
*
w12
+
input_data
[(
2
*
i
+
1
)
*
input_width
]
*
w21
+
input_data
[(
2
*
i
+
1
)
*
input_width
+
1
]
*
w22
;
output_data
[
i
*
output_width
]
=
newscale_data
[
c
]
*
output_data
[
i
*
output_width
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
i
*
output_width
]
=
output_data
[
i
*
output_width
]
<
0
?
0
:
output_data
[
i
*
output_width
];
}
}
}
}
#else
//#ifdef _OPENMP
// const float *newscale_data = new_scale->data<float>();
// const float *newbias_data = new_bias->data<float>();
//
// const int batch_size = static_cast<int>(input->dims()[0]);
// const int input_channel = static_cast<int>(input->dims()[1]);
//
// const int input_height = static_cast<int>(input->dims()[2]);
// const int input_width = static_cast<int>(input->dims()[3]);
// const int output_height = static_cast<int>(output->dims()[2]);
// const int output_width = static_cast<int>(output->dims()[3]);
// const int inhxw = input_height * input_width;
// const int outhxw = output_height * output_width;
//
// float32x4_t zero = vdupq_n_f32(0.0);
// for (int b = 0; b < batch_size; b++) {
// #pragma omp parallel for
// for (int c = 0; c < input_channel; c++) {
// const float *filter_data = filter->data<float>() + c * 9;
// const float *input_data = input->data<float>() + c * inhxw;
// float *output_data = output->data<float>() + c * outhxw;
// float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
// float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
//
// float w00 = filter_data[0];
// float w01 = filter_data[1];
// float w02 = filter_data[2];
// float w10 = filter_data[3];
// float w11 = filter_data[4];
// float w12 = filter_data[5];
// float w20 = filter_data[6];
// float w21 = filter_data[7];
// float w22 = filter_data[8];
//
// int m;
// for (m = 1; m < output_width - 2; m = m + 3) {
// float *output_ptr = output_data + m;
// float32x4x2_t input_buff_mid{}, input_buff_bottom{};
// float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
// input_buff_mid = vld2q_f32(input_data + (2 * m - 1));
// input_buff_bottom = vld2q_f32(input_data + input_width + (2 * m -
// 1));
//
// in0 = input_buff_mid.val[0];
// tmp0 = input_buff_mid.val[1];
// tmp1 = vextq_f32(in0, zero, 1);
//
// in2 = input_buff_bottom.val[0];
// tmp2 = input_buff_bottom.val[1];
// tmp3 = vextq_f32(in2, zero, 1);
//
// out0 = vmulq_n_f32(in0, w10);
// out0 = vmlaq_n_f32(out0, tmp0, w11);
// out0 = vmlaq_n_f32(out0, tmp1, w12);
// out0 = vmlaq_n_f32(out0, in2, w20);
// out0 = vmlaq_n_f32(out0, tmp2, w21);
// out0 = vmlaq_n_f32(out0, tmp3, w22);
// out0 = vmlaq_f32(vnewbias, vnewscale, out0);
// if (if_relu) {
// out0 = vmaxq_f32(out0, zero);
// }
// vst1q_lane_f32(output_ptr, out0, 0);
// vst1q_lane_f32(output_ptr + 1, out0, 1);
// vst1q_lane_f32(output_ptr + 2, out0, 2);
// }
// for (m = 1; m < output_width - 2; m += 3) {
// }
// for (int j = m; j < output_width; j++) {
// output_data[j] = input_data[2 * j - 1] * w10 + input_data[2 * j] *
// w11 +
// input_data[2 * j + 1] * w12 +
// input_data[2 * j - 1 + input_width] * w20 +
// input_data[2 * j + input_width] * w21 +
// input_data[2 * j + 1 + input_width] * w22;
// output_data[j] = newscale_data[c] * output_data[j] +
// newbias_data[c]; if (if_relu) {
// output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
// }
// }
//
// for (int i = 1; i < output_height; i += 1) {
// for (int m = 1; m < output_width - 2; m += 3) {
// float *output_ptr = output_data + i * output_width + m;
// float32x4x2_t input_buff_top{}, input_buff_mid{},
// input_buff_bottom{}; float32x4_t in0, in1, in2, in3, in4, in5,
// tmp0, tmp1, tmp2, tmp3,
// tmp4, tmp5, out0;
// input_buff_top =
// vld2q_f32(input_data + (2 * i - 1) * input_width + (2 * m -
// 1));
// input_buff_mid =
// vld2q_f32(input_data + (2 * i) * input_width + (2 * m - 1));
// input_buff_bottom =
// vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m -
// 1));
//
// in0 = input_buff_top.val[0];
// tmp0 = input_buff_top.val[1];
// tmp1 = vextq_f32(in0, zero, 1);
//
// in2 = input_buff_mid.val[0];
// tmp2 = input_buff_mid.val[1];
// tmp3 = vextq_f32(in2, zero, 1);
//
// in4 = input_buff_bottom.val[0];
// tmp4 = input_buff_bottom.val[1];
// tmp5 = vextq_f32(in4, zero, 1);
//
// out0 = vmulq_n_f32(in0, w00);
// out0 = vmlaq_n_f32(out0, tmp0, w01);
// out0 = vmlaq_n_f32(out0, tmp1, w02);
// out0 = vmlaq_n_f32(out0, in2, w10);
// out0 = vmlaq_n_f32(out0, tmp2, w11);
// out0 = vmlaq_n_f32(out0, tmp3, w12);
// out0 = vmlaq_n_f32(out0, in4, w20);
// out0 = vmlaq_n_f32(out0, tmp4, w21);
// out0 = vmlaq_n_f32(out0, tmp5, w22);
// out0 = vmlaq_f32(vnewbias, vnewscale, out0);
// if (if_relu) {
// out0 = vmaxq_f32(out0, zero);
// }
// vst1q_lane_f32(output_ptr, out0, 0);
// vst1q_lane_f32(output_ptr + 1, out0, 1);
// vst1q_lane_f32(output_ptr + 2, out0, 2);
// }
// int m;
// for (m = 1; m < output_width - 2; m += 3) {
// }
// for (int j = m; j < output_width; j++) {
// output_data[i * output_width + j] =
// input_data[(2 * i - 1) * input_width + 2 * j - 1] * w00 +
// input_data[(2 * i - 1) * input_width + 2 * j] * w01 +
// input_data[(2 * i - 1) * input_width + 2 * j + 1] * w02 +
// input_data[(2 * i) * input_width + 2 * j - 1] * w10 +
// input_data[(2 * i) * input_width + 2 * j] * w11 +
// input_data[(2 * i) * input_width + 2 * j + 1] * w12 +
// input_data[(2 * i + 1) * input_width + 2 * j - 1] * w20 +
// input_data[(2 * i + 1) * input_width + 2 * j] * w21 +
// input_data[(2 * i + 1) * input_width + 2 * j + 1] * w22;
// output_data[i * output_width + j] =
// newscale_data[c] * output_data[i * output_width + j] +
// newbias_data[c];
// if (if_relu) {
// output_data[i * output_width + j] =
// output_data[i * output_width + j] < 0
// ? 0
// : output_data[i * output_width + j];
// }
// }
// }
// output_data[0] = input_data[0] * w11 + input_data[1] * w12 +
// input_data[input_height] * w21 +
// input_data[input_height + 1] * w22;
//
// output_data[0] = newscale_data[c] * output_data[0] + newbias_data[c];
// if (if_relu) {
// output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
// }
// for (int i = 1; i < output_height; i++) {
// output_data[i * output_width] =
// input_data[(2 * i - 1) * input_width] * w01 +
// input_data[(2 * i - 1) * input_width + 1] * w02 +
// input_data[(2 * i) * input_width] * w11 +
// input_data[(2 * i) * input_width + 1] * w12 +
// input_data[(2 * i + 1) * input_width] * w21 +
// input_data[(2 * i + 1) * input_width + 1] * w22;
//
// output_data[i * output_width] =
// newscale_data[c] * output_data[i * output_width] +
// newbias_data[c];
// if (if_relu) {
// output_data[i * output_width] = output_data[i * output_width] < 0
// ? 0
// : output_data[i *
// output_width];
// }
// }
// }
// }
//
//#else
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
...
...
@@ -1646,9 +1653,6 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
...
...
@@ -1660,22 +1664,22 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
auto
input_const
=
input_data_tmp
;
const
float
*
filter_data_tmp
=
filter_data
+
9
*
j
;
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
...
...
@@ -1726,7 +1730,9 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
vst1q_f32
(
output_row_ptr
,
res3
);
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
vst1q_lane_f32
(
output_row_ptr
+
2
,
res3
,
2
);
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
...
...
@@ -1765,7 +1771,9 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
res3
=
vmaxq_f32
(
res3
,
zero
);
}
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
vst1q_lane_f32
(
output_row_ptr
+
2
,
res3
,
2
);
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
...
...
@@ -1865,12 +1873,11 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
:
output_data_tmp
[
i
*
out_l
+
out_l
-
1
];
}
}
filter_data_tmp
+=
9
;
}
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
#endif
//
#endif
#endif
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录