Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
95cac1bf
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
95cac1bf
编写于
6月 29, 2018
作者:
W
wangliu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize depthwise_conv 3x3s2
上级
e4d182c5
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
637 addition
and
29 deletion
+637
-29
CMakeLists.txt
CMakeLists.txt
+22
-5
src/common/common.h
src/common/common.h
+27
-0
src/common/log.h
src/common/log.h
+2
-2
src/framework/tensor.h
src/framework/tensor.h
+17
-0
src/operators/fusion_conv_add.h
src/operators/fusion_conv_add.h
+1
-2
src/operators/kernel/arm/conv_add_kernel.cpp
src/operators/kernel/arm/conv_add_kernel.cpp
+21
-3
src/operators/kernel/conv_add_kernel.h
src/operators/kernel/conv_add_kernel.h
+2
-0
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+506
-0
src/operators/math/depthwise_conv_3x3.h
src/operators/math/depthwise_conv_3x3.h
+37
-0
test/net/test_mobilenet.cpp
test/net/test_mobilenet.cpp
+1
-5
test/test_helper.h
test/test_helper.h
+1
-12
未找到文件。
CMakeLists.txt
浏览文件 @
95cac1bf
...
...
@@ -7,11 +7,20 @@ option(USE_EXCEPTION "use std exception" ON)
option
(
LOG_PROFILE
"log profile"
ON
)
# select the platform to build
option
(
CPU
"armv7 with neon"
ON
)
option
(
MALI_GPU
"mali gpu"
O
N
)
option
(
MALI_GPU
"mali gpu"
O
FF
)
option
(
FPGA
"fpga"
OFF
)
set
(
DEBUGING ON
)
file
(
GLOB_RECURSE PADDLE_MOBILE_CC src/*.cc src/*.cpp src/*.c
)
file
(
GLOB_RECURSE PADDLE_MOBILE_H src/*.h
)
if
(
CPU
)
add_definitions
(
-DPADDLE_MOBILE_CPU
)
else
()
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/arm/*.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/arm/*.cc
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/arm/*.cpp
)
endif
()
if
(
MALI_GPU
)
...
...
@@ -27,15 +36,24 @@ if (MALI_GPU)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-L
${
ACL_ROOT
}
/build/opencl-1.2-stubs"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-lOpenCL"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-DUSE_ACL=1"
)
else
()
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/mali/*.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/mali/*.cc
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/mali/*.cpp
)
endif
()
if
(
FPGA
)
add_definitions
(
-DPADDLE_MOBILE_FPGA
)
add_definitions
(
-DPADDLE_MOBILE_FPGA
)
else
()
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/fpga/*.h
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/fpga/*.cc
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/operators/kernel/fpga/*.cpp
)
endif
()
set
(
CMAKE_CXX_FLAGS
"-std=c++14 -O3 -s
${
CMAKE_CXX_FLAGS
}
"
)
if
(
DEBUGING
)
message
(
STATUS
"debug"
)
set
(
CMAKE_BUILD_TYPE Debug
)
...
...
@@ -69,8 +87,7 @@ if(USE_OPENMP)
endif
()
file
(
GLOB_RECURSE PADDLE_MOBILE_CC src/*.cc src/*.cpp src/*.c
)
file
(
GLOB_RECURSE PADDLE_MOBILE_H src/*.h
)
if
(
NOT ANDROID_NDK_TOOLCHAIN_INCLUDED
)
list
(
REMOVE_ITEM PADDLE_MOBILE_CC
${
CMAKE_CURRENT_SOURCE_DIR
}
/src/jni/*.cpp
)
...
...
src/common/common.h
0 → 100644
浏览文件 @
95cac1bf
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <chrono>
using
Time
=
decltype
(
std
::
chrono
::
high_resolution_clock
::
now
());
inline
Time
time
()
{
return
std
::
chrono
::
high_resolution_clock
::
now
();
}
inline
double
time_diff
(
Time
t1
,
Time
t2
)
{
typedef
std
::
chrono
::
microseconds
ms
;
auto
diff
=
t2
-
t1
;
ms
counter
=
std
::
chrono
::
duration_cast
<
ms
>
(
diff
);
return
counter
.
count
()
/
1000.0
;
}
src/common/log.h
浏览文件 @
95cac1bf
...
...
@@ -120,7 +120,7 @@ struct ToLog {
if (level > paddle_mobile::log_level) { \
} else \
paddle_mobile::ToLog( \
level, static_cast<
std::stringstream &>(
\
level, static_cast<
const std::stringstream &>(
\
std::stringstream() \
<< "[file: " \
<< (strrchr(__FILE__, '/') ? (strrchr(__FILE__, '/') + 1) \
...
...
@@ -133,7 +133,7 @@ struct ToLog {
} else \
paddle_mobile::ToLog( \
paddle_mobile::kLOG_DEBUG, \
static_cast<
std::stringstream &>(
\
static_cast<
const std::stringstream &>(
\
std::stringstream() \
<< "[file: " \
<< (strrchr(__FILE__, '/') ? (strrchr(__FILE__, '/') + 1) \
...
...
src/framework/tensor.h
浏览文件 @
95cac1bf
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#include <vector>
#include "common/enforce.h"
#include <fstream>
#include "common/enforce.h"
#include "framework/data_layout.h"
#include "framework/ddim.h"
...
...
@@ -131,6 +132,22 @@ class Tensor {
return
reinterpret_cast
<
T
*>
(
mutable_data
(
typeid
(
T
)));
}
#ifdef PADDLE_MOBILE_DEBUG
template
<
typename
T
>
inline
void
dump
(
std
::
string
filename
)
const
{
const
T
*
dataptr
=
data
<
T
>
();
std
::
ofstream
out
(
filename
.
c_str
());
for
(
int
i
=
0
;
i
<
numel
();
++
i
)
{
out
<<
dataptr
[
i
]
<<
" "
;
}
out
<<
"形状:"
;
for
(
int
j
=
0
;
j
<
dims_
.
size
();
++
j
)
{
out
<<
dims_
[
j
]
<<
" "
;
}
out
.
close
();
}
#endif
inline
void
*
mutable_data
(
std
::
type_index
type
)
{
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
...
...
src/operators/fusion_conv_add.h
浏览文件 @
95cac1bf
...
...
@@ -11,9 +11,8 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define FUSION_CONVADD_OP
#ifdef FUSION_CONVADD_OP
#ifdef FUSION_CONVADD_OP
#pragma once
#include <string>
...
...
src/operators/kernel/arm/conv_add_kernel.cpp
浏览文件 @
95cac1bf
...
...
@@ -23,8 +23,7 @@ bool ConvAddKernel<CPU, float>::Init(const FusionConvAddParam ¶) const {
return
true
;
}
template
<
>
void
ConvAddKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddParam
&
param
)
const
{
void
ConvAddBasic
(
const
FusionConvAddParam
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
...
...
@@ -102,7 +101,6 @@ void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam ¶m) const {
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
...
...
@@ -112,6 +110,26 @@ void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam ¶m) const {
}
}
}
template
<
>
void
ConvAddKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddParam
&
param
)
const
{
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
param
.
Bias
(),
true
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
param
.
Bias
(),
param
.
Output
(),
true
);
}
else
{
ConvAddBasic
(
param
);
}
}
template
class
ConvAddKernel
<
CPU
,
float
>;
}
// namespace operators
...
...
src/operators/kernel/conv_add_kernel.h
浏览文件 @
95cac1bf
...
...
@@ -20,9 +20,11 @@ limitations under the License. */
#if __ARM_NEON
#include <arm_neon.h>
#endif
#include "common/common.h"
#include "framework/ddim.h"
#include "framework/operator.h"
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
...
...
src/operators/math/depthwise_conv_3x3.cpp
0 → 100644
浏览文件 @
95cac1bf
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/math/depthwise_conv_3x3.h"
#include <vector>
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
void
DepthwiseConv3x3
(
const
Tensor
*
input
,
vector
<
int
>
strides
,
vector
<
int
>
paddings
,
const
Tensor
*
filter
,
Tensor
*
bias
,
Tensor
*
output
,
bool
if_bias
)
{
#if __ARM_NEON
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
input_height
=
input
->
dims
()[
2
];
const
int
input_width
=
input
->
dims
()[
3
];
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
_kernel_size
=
3
;
const
int
stride_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
float
zero
=
0
;
const
int
input_channel_stride
=
input_height
*
input_width
;
const
int
output_channel_stride
=
output_height
*
output_width
;
const
int
filter_channel_stride
=
9
;
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
if
(
if_bias
)
{
math
::
expand_bias
(
*
bias
,
1
,
output
->
dims
());
output
->
ShareDataWith
(
*
bias
);
}
float
*
output_data
=
output
->
mutable_data
<
float
>
();
const
int
input_batch_stride
=
output_channels
*
input_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
output_channel_stride
;
const
int
filter_batch_stride
=
output_channels
*
output_channel_stride
;
const
float
*
pos1
,
*
pos2
,
*
pos3
,
*
filter1
,
*
filter2
,
*
filter3
,
*
output_ptr
;
int
hstart
,
wstart
,
hend
,
wend
;
float
result
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
filter1
=
filter_data
;
filter2
=
filter1
+
3
;
filter3
=
filter2
+
3
;
for
(
int
ph
=
0
;
ph
<
output_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
pw
++
)
{
hstart
=
ph
*
stride_height
-
padding_height
;
wstart
=
pw
*
stride_width
-
padding_width
;
hend
=
min
(
hstart
+
_kernel_size
,
input_height
+
padding_height
);
wend
=
min
(
wstart
+
_kernel_size
,
input_width
+
padding_width
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
hend
=
min
(
hend
,
input_height
);
wend
=
min
(
wend
,
input_width
);
pos1
=
input_data
+
hstart
*
input_width
+
wstart
;
pos2
=
input_data
+
(
hstart
+
1
)
*
input_width
+
wstart
;
pos3
=
input_data
+
(
hstart
+
2
)
*
input_width
+
wstart
;
output_ptr
=
output_data
+
ph
*
output_width
+
pw
;
if
(
hend
-
hstart
!=
3
||
wend
-
wstart
!=
3
)
{
result
=
0
;
float
fake_input
[
9
]
=
{
0
};
if
(
hstart
==
0
&&
wstart
==
0
)
{
// 左上角
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
>=
3
-
hend
&&
k
>=
3
-
wend
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
-
(
3
-
hend
))
*
input_width
+
k
-
(
3
-
wend
)];
}
}
}
}
else
if
(
hstart
==
0
&&
wend
==
input_width
)
{
// 右上角
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
>=
3
-
hend
&&
k
<=
input_width
-
wstart
-
1
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
-
(
3
-
hend
))
*
input_width
+
k
+
wstart
];
}
}
}
}
else
if
(
hend
==
input_height
&&
wstart
==
0
)
{
// 左下角
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
<=
input_height
-
1
-
hstart
&&
k
>=
3
-
wend
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
k
-
(
3
-
wend
)];
}
}
}
}
else
if
(
hend
==
input_height
&&
wend
==
input_width
)
{
// 右下角
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
<=
input_height
-
hstart
-
1
&&
k
<=
input_width
-
wstart
-
1
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
k
+
wstart
];
}
}
}
}
else
if
(
hstart
==
0
)
{
// 顶部
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
>=
3
-
hend
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
-
(
3
-
hend
))
*
input_width
+
k
+
wstart
];
}
}
}
}
else
if
(
hend
==
input_height
)
{
// 底部
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
j
<=
input_height
-
hstart
-
1
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
k
+
wstart
];
}
}
}
}
else
if
(
wstart
==
0
)
{
// 左侧
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
k
>=
3
-
wend
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
(
k
-
(
3
-
wend
))];
}
}
}
}
else
if
(
wend
==
input_width
)
{
// 右侧
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
for
(
int
k
=
0
;
k
<
3
;
++
k
)
{
if
(
k
<=
input_width
-
wstart
-
1
)
{
fake_input
[
3
*
j
+
k
]
=
input_data
[(
j
+
hstart
)
*
input_width
+
k
+
wstart
];
}
}
}
}
for
(
int
l
=
0
;
l
<
9
;
++
l
)
{
result
+=
fake_input
[
l
]
*
filter1
[
l
];
}
if
(
if_bias
)
{
output_data
[
ph
*
output_width
+
pw
]
+=
result
;
}
else
{
output_data
[
ph
*
output_width
+
pw
]
=
result
;
}
}
else
{
#if defined(ARMV17)
asm
volatile
(
"vld1.32 {q1}, [%[pos1]]
\n\t
"
"vld1.32 {q4}, [%[filter1]]
\n\t
"
"vmov.f32 q0, #0.0
\n\t
"
"vld1.32 {q2}, [%[pos2]]
\n\t
"
"vld1.32 {q5}, [%[filter2]]
\n\t
"
"vmla.f32 q0, q1, q4
\n\t
"
"vld1.32 {q3}, [%[pos3]]
\n\t
"
"vld1.32 {q6}, [%[filter3]]
\n\t
"
"vmla.f32 q0, q2, q5
\n\t
"
"vmla.f32 q0, q3, q6
\n\t
"
"vmov.f32 d1[1], %[zero]
\n\t
"
"vadd.f32 d4, d0, d1
\n\t
"
"vadd.f32 s10, s8, s9
\n\t
"
"vst1.32 {d5[0]},[%[output_ptr]]
\n\t
"
:
:
[
input_data
]
"r"
(
input_data
),
[
pos1
]
"r"
(
pos1
),
[
pos2
]
"r"
(
pos2
),
[
pos3
]
"r"
(
pos3
),
[
filter1
]
"r"
(
filter1
),
[
filter2
]
"r"
(
filter2
),
[
filter3
]
"r"
(
filter3
),
[
output_ptr
]
"r"
(
output_ptr
),
[
zero
]
"r"
(
zero
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
);
#else
const
float32x4_t
data1
=
vld1q_f32
(
pos1
);
const
float32x4_t
data2
=
vld1q_f32
(
pos2
);
const
float32x4_t
data3
=
vld1q_f32
(
pos3
);
const
float32x4_t
v_filter1
=
vld1q_f32
(
filter1
);
const
float32x4_t
v_filter2
=
vld1q_f32
(
filter2
);
const
float32x4_t
v_filter3
=
vld1q_f32
(
filter3
);
float32x4_t
mula
=
vmulq_f32
(
data1
,
v_filter1
);
mula
=
vmlaq_f32
(
mula
,
data2
,
v_filter2
);
mula
=
vmlaq_f32
(
mula
,
data3
,
v_filter3
);
float32x2_t
res
=
vpadd_f32
(
vget_high_f32
(
vsetq_lane_f32
(
0
,
mula
,
3
)),
vget_low_f32
(
mula
));
res
=
vpadd_f32
(
res
,
res
);
if
(
if_bias
)
{
output_data
[
ph
*
output_width
+
pw
]
+=
vget_lane_f32
(
res
,
0
);
}
else
{
output_data
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
);
}
#endif
}
}
}
input_data
+=
input_channel_stride
;
output_data
+=
output_channel_stride
;
filter_data
+=
filter_channel_stride
;
}
input_data
+=
input_batch_stride
;
output_data
+=
output_batch_stride
;
}
#endif
}
void
DepthwiseConv3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
)
{
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
bias_data
=
bias
->
data
<
float
>
();
const
int
h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
l
=
h
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
hxw
=
h
*
w
;
float32x4_t
vbias
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
if
(
if_bias
)
{
vbias
=
vdupq_n_f32
(
bias_data
[
j
]);
}
int
l_mid
=
l
-
2
;
// l=1->l_mid=-1,l=2->l_mid=0
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
output_data
[
0
]
=
w11
*
input_data
[
0
]
+
w12
*
input_data
[
1
]
+
w21
*
input_data
[
l
]
+
w22
*
input_data
[
l
+
1
]
+
bias_data
[
j
];
output_data
[
l
-
1
]
=
w10
*
input_data
[
l
-
2
]
+
w11
*
input_data
[
l
-
1
]
+
w20
*
input_data
[
2
*
l
-
2
]
+
w21
*
input_data
[
2
*
l
-
1
]
+
bias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
=
w01
*
input_data
[(
l
-
2
)
*
l
]
+
w02
*
input_data
[(
l
-
2
)
*
l
+
1
]
+
w11
*
input_data
[(
l
-
1
)
*
l
]
+
w12
*
input_data
[(
l
-
1
)
*
l
+
1
]
+
bias_data
[
j
];
output_data
[
l
*
l
-
1
]
=
w00
*
input_data
[(
l
-
2
)
*
(
l
+
1
)]
+
w01
*
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
w10
*
input_data
[
l
*
l
-
2
]
+
w11
*
input_data
[
l
*
l
-
1
]
+
bias_data
[
j
];
for
(
int
i
=
1
;
i
<
l
-
1
;
++
i
)
{
output_data
[
i
*
l
]
=
w01
*
input_data
[
i
*
l
-
l
]
+
w02
*
input_data
[
i
*
l
-
l
+
1
]
+
w11
*
input_data
[
i
*
l
]
+
w12
*
input_data
[
i
*
l
+
1
]
+
w21
*
input_data
[
i
*
l
+
l
]
+
w22
*
input_data
[
i
*
l
+
l
+
1
]
+
bias_data
[
j
];
output_data
[
i
*
l
+
l
-
1
]
=
w00
*
input_data
[
i
*
l
+
l
-
1
-
l
-
1
]
+
w01
*
input_data
[
i
*
l
+
l
-
1
-
l
]
+
w10
*
input_data
[
i
*
l
+
l
-
1
-
1
]
+
w11
*
input_data
[
i
*
l
+
l
-
1
]
+
w20
*
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
]
+
bias_data
[
j
];
}
// top 1 row and bottom 1 row
const
float
*
input_tmp
=
input_data
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
out0
;
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
l
);
const
float
*
input_tmp_end
=
input_tmp
+
(
l
-
2
)
*
l
;
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
l
);
int
c_mid
=
l_mid
;
auto
output_ptr
=
output_data
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
l
+
4
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
tmp2
=
vextq_f32
(
in2
,
in3
,
1
);
tmp3
=
vextq_f32
(
in2
,
in3
,
2
);
out0
=
vmulq_n_f32
(
in0
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
vst1q_f32
(
output_ptr
,
out0
);
in5
=
vld1q_f32
(
input_tmp_end
+
4
);
in7
=
vld1q_f32
(
input_tmp_end
+
l
+
4
);
tmp0
=
vextq_f32
(
in4
,
in5
,
1
);
tmp1
=
vextq_f32
(
in4
,
in5
,
2
);
tmp2
=
vextq_f32
(
in6
,
in7
,
1
);
tmp3
=
vextq_f32
(
in6
,
in7
,
2
);
out0
=
vmulq_n_f32
(
in4
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
vst1q_f32
(
output_ptr
+
(
l
-
1
)
*
l
,
out0
);
// can optimize to each 8 stride.
input_tmp
+=
4
;
input_tmp_end
+=
4
;
output_ptr
+=
4
;
in0
=
in1
;
in2
=
in3
;
in4
=
in5
;
in6
=
in7
;
}
// top right pad
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
l
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
2
*
l
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
tmp2
=
vextq_f32
(
in2
,
pad1
,
1
);
tmp3
=
vextq_f32
(
in2
,
pad1
,
2
);
out0
=
vmulq_n_f32
(
in0
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
2
);
}
}
// bottom right pad
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
l
*
l
-
1
-
l
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_data
[
l
*
l
-
1
]);
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
tmp2
=
vextq_f32
(
in6
,
pad3
,
1
);
tmp3
=
vextq_f32
(
in6
,
pad3
,
2
);
out0
=
vmulq_n_f32
(
in4
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vaddq_f32
(
out0
,
vbias
);
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
2
);
}
}
// mid
for
(
int
i
=
0
;
i
<
l
-
2
;
++
i
)
{
auto
output_ptr
=
output_data
+
(
i
+
1
)
*
l
+
1
;
input_tmp
=
input_data
+
i
*
l
;
auto
in0_tmp
=
vld1q_f32
(
input_tmp
);
auto
in2_tmp
=
vld1q_f32
(
input_tmp
+
l
);
auto
in4_tmp
=
vld1q_f32
(
input_tmp
+
l
+
l
);
c_mid
=
l_mid
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
auto
in1_tmp
=
vld1q_f32
(
input_tmp
+
4
);
auto
in3_tmp
=
vld1q_f32
(
input_tmp
+
l
+
4
);
auto
in5_tmp
=
vld1q_f32
(
input_tmp
+
l
+
l
+
4
);
tmp0
=
vextq_f32
(
in0_tmp
,
in1_tmp
,
1
);
tmp1
=
vextq_f32
(
in0_tmp
,
in1_tmp
,
2
);
tmp2
=
vextq_f32
(
in2_tmp
,
in3_tmp
,
1
);
tmp3
=
vextq_f32
(
in2_tmp
,
in3_tmp
,
2
);
tmp4
=
vextq_f32
(
in4_tmp
,
in5_tmp
,
1
);
tmp5
=
vextq_f32
(
in4_tmp
,
in5_tmp
,
2
);
out0
=
vmulq_n_f32
(
in0_tmp
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in2_tmp
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
vst1q_f32
(
output_ptr
,
out0
);
output_ptr
+=
4
;
input_tmp
+=
4
;
in0_tmp
=
in1_tmp
;
in2_tmp
=
in3_tmp
;
in4_tmp
=
in5_tmp
;
}
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
+
l
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
+
l
+
l
]);
tmp0
=
vextq_f32
(
in0_tmp
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0_tmp
,
pad0
,
2
);
tmp2
=
vextq_f32
(
in2_tmp
,
pad1
,
1
);
tmp3
=
vextq_f32
(
in2_tmp
,
pad1
,
2
);
tmp4
=
vextq_f32
(
in4_tmp
,
pad2
,
1
);
tmp5
=
vextq_f32
(
in4_tmp
,
pad2
,
2
);
out0
=
vmulq_n_f32
(
in0_tmp
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in2_tmp
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vaddq_f32
(
out0
,
vbias
);
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
2
);
}
}
}
output_data
+=
hxw
;
input_data
+=
hxw
;
filter_data_tmp
+=
9
;
}
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/depthwise_conv_3x3.h
0 → 100644
浏览文件 @
95cac1bf
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "framework/tensor.h"
#include "operators/math/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
using
framework
::
Tensor
;
using
std
::
max
;
using
std
::
min
;
using
std
::
vector
;
void
DepthwiseConv3x3
(
const
Tensor
*
input
,
vector
<
int
>
strides
,
vector
<
int
>
paddings
,
const
Tensor
*
filter
,
Tensor
*
bias
,
Tensor
*
output
,
bool
if_bias
);
void
DepthwiseConv3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
test/net/test_mobilenet.cpp
浏览文件 @
95cac1bf
...
...
@@ -33,12 +33,8 @@ int main() {
input_tensor
.
data
<
float
>
()
+
input_tensor
.
numel
());
auto
time3
=
time
();
auto
vec_result
=
executor
.
Predict
(
input
,
dims
);
float
sum
=
0
;
for
(
const
auto
item
:
vec_result
)
{
sum
+=
item
;
}
DLOG
<<
"mobilenet output sum ="
<<
sum
;
auto
time4
=
time
();
DLOG
<<
"predict cost :"
<<
time_diff
(
time3
,
time4
)
<<
"ms"
;
return
0
;
}
test/test_helper.h
浏览文件 @
95cac1bf
...
...
@@ -14,10 +14,10 @@ limitations under the License. */
#pragma once
#include <chrono>
#include <fstream>
#include <random>
#include "common/common.h"
#include "common/log.h"
#include "framework/ddim.h"
#include "framework/tensor.h"
...
...
@@ -35,17 +35,6 @@ static const std::string g_test_image_1x3x224x224 =
using
paddle_mobile
::
framework
::
DDim
;
using
paddle_mobile
::
framework
::
Tensor
;
using
Time
=
decltype
(
std
::
chrono
::
high_resolution_clock
::
now
());
Time
time
()
{
return
std
::
chrono
::
high_resolution_clock
::
now
();
}
double
time_diff
(
Time
t1
,
Time
t2
)
{
typedef
std
::
chrono
::
microseconds
ms
;
auto
diff
=
t2
-
t1
;
ms
counter
=
std
::
chrono
::
duration_cast
<
ms
>
(
diff
);
return
counter
.
count
()
/
1000.0
;
}
template
<
typename
T
>
void
SetupTensor
(
paddle_mobile
::
framework
::
Tensor
*
input
,
paddle_mobile
::
framework
::
DDim
dims
,
T
lower
,
T
upper
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录