nearest_interp_compute.cu 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/nearest_interp_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;

__global__ void KeNearestNeighborInterp(const float* in,
                                        const size_t in_img_h,
                                        const size_t in_img_w,
                                        const size_t input_h,
                                        const size_t input_w,
                                        float* out,
                                        const size_t out_img_h,
                                        const size_t out_img_w,
                                        const size_t output_h,
                                        const size_t output_w,
                                        const size_t num_channels,
                                        const float ratio_h,
                                        const float ratio_w,
                                        const bool align_corners) {
  int nthreads = output_h * output_w;
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (; tid < nthreads; tid += stride) {
    int out_id_h = tid / output_w;
    int out_id_w = tid % output_w;
    int in_img_size = input_w / num_channels;
    int out_img_size = output_w / num_channels;
    int channel_id = out_id_w / out_img_size;

    int out_img_idy = (out_id_w % out_img_size) / out_img_w;
    int in_img_idy = (align_corners)
                         ? static_cast<int>(ratio_h * out_img_idy + 0.5)
                         : static_cast<int>(ratio_h * out_img_idy);

    int out_img_idx = tid % out_img_w;
    int in_img_idx = (align_corners)
                         ? static_cast<int>(ratio_w * out_img_idx + 0.5)
                         : static_cast<int>(ratio_w * out_img_idx);

    out[tid] = in[out_id_h * input_w + channel_id * in_img_size +
                  in_img_idy * in_img_w + in_img_idx];
  }
}

void NearestInterpCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<CUDAContext>();
  auto stream = ctx.exec_stream();

  Tensor* input = param.X;
  Tensor* output = param.Out;
  Tensor* out_size = param.OutSize;

  auto* input_data = input->data<float>();

  const int n = input->dims()[0];
  const int c = input->dims()[1];
  const int in_h = input->dims()[2];
  const int in_w = input->dims()[3];

  int out_h = param.out_h;
  int out_w = param.out_w;
  float scale = param.scale;
  bool align_corners = param.align_corners;
  if (scale > 0) {
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }

  if (out_size != nullptr) {
    Tensor sizes;
    float* size_data = sizes.mutable_data<float>();
    float* outsize_data = out_size->mutable_data<float>(TARGET(kCUDA));
    cudaMemcpy(
        size_data, outsize_data, sizeof(float) * 2, cudaMemcpyDeviceToHost);
    out_h = static_cast<int>(size_data[0]);
    out_w = static_cast<int>(size_data[1]);
  }

  auto output_data = output->mutable_data<float>(TARGET(kCUDA));

  if (in_h == out_h && in_w == out_w) {
    cudaMemcpy(output_data,
               input_data,
               sizeof(float) * n * c * in_h * in_w,
               cudaMemcpyHostToDevice);
    return;
  }

  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }

  int in_hw = in_h * in_w;
  int out_hw = out_h * out_w;
  int in_chw = c * in_hw;
  int out_chw = c * out_hw;

123
  int pixel_num = n * out_chw;
124
  int threads = 512;
125
  int blocks = (pixel_num + threads - 1) / threads;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  blocks = blocks > 8 ? 8 : blocks;

  KeNearestNeighborInterp<<<blocks, threads, 0, stream>>>(input_data,
                                                          in_h,
                                                          in_w,
                                                          n,
                                                          in_chw,
                                                          output_data,
                                                          out_h,
                                                          out_w,
                                                          n,
                                                          out_chw,
                                                          c,
                                                          ratio_h,
                                                          ratio_w,
                                                          align_corners);
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(nearest_interp,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::NearestInterpCompute,
                     def)
Z
Zhaolong Xing 已提交
157 158 159 160 161 162 163 164 165 166 167 168
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindInput("OutSize",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
169
    .Finalize();