Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
cef884e5
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cef884e5
编写于
9月 20, 2019
作者:
P
Pei Yang
提交者:
GitHub
9月 20, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine concat cuda kernel, test=develop (#2081)
上级
977a66fc
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
58 addition
and
231 deletion
+58
-231
lite/kernels/cuda/concat_compute.cu
lite/kernels/cuda/concat_compute.cu
+48
-223
lite/kernels/cuda/concat_compute_test.cc
lite/kernels/cuda/concat_compute_test.cc
+8
-5
lite/kernels/cuda/elementwise_add_compute_test.cc
lite/kernels/cuda/elementwise_add_compute_test.cc
+0
-1
lite/kernels/cuda/nearest_interp_compute.cu
lite/kernels/cuda/nearest_interp_compute.cu
+2
-2
未找到文件。
lite/kernels/cuda/concat_compute.cu
浏览文件 @
cef884e5
...
...
@@ -21,134 +21,25 @@ namespace kernels {
namespace
cuda
{
using
Tensor
=
lite
::
Tensor
;
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
**
inputs
,
const
int
*
input_cols
,
int
col_size
,
const
int
output_rows
,
const
int
output_cols
,
T
*
output
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
curr_segment
=
0
;
int
curr_offset
=
input_cols
[
0
];
for
(;
tid_x
<
output_cols
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
curr_col_offset
=
input_cols
[
curr_segment
+
1
];
while
(
curr_col_offset
<=
tid_x
)
{
curr_offset
=
curr_col_offset
;
++
curr_segment
;
curr_col_offset
=
input_cols
[
curr_segment
+
1
];
}
int
local_col
=
tid_x
-
curr_offset
;
int
segment_width
=
curr_col_offset
-
curr_offset
;
const
T
*
input_ptr
=
inputs
[
curr_segment
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
output_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output
[
tid_y
*
output_cols
+
tid_x
]
=
input_ptr
[
tid_y
*
segment_width
+
local_col
];
}
}
template
<
typename
T
>
__device__
void
ConcatKernelDetail
(
const
T
**
inputs_data
,
const
int
fixed_in_col
,
const
int
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
out_cols
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
split
=
tid_x
*
1.0
/
fixed_in_col
;
int
in_offset
=
tid_x
-
split
*
fixed_in_col
;
const
T
*
input_ptr
=
inputs_data
[
split
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
out_rows
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
output_data
[
tid_y
*
out_cols
+
tid_x
]
=
input_ptr
[
tid_y
*
fixed_in_col
+
in_offset
];
}
}
// for (int i = 0; i < 4; i++){
// printf("input[0][%d] = %.1f\n", i, inputs_data[0][i]);
// printf("output[%d] = %.1f\n", i, output_data[i]);
// }
}
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
int
fixed_in_col
,
const
int
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
2
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
T
*
input_addr2
,
const
int
fixed_in_col
,
const
int
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
3
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
inputs_data
[
2
]
=
input_addr2
;
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
T
*
input_addr2
,
const
T
*
input_addr3
,
const
int
fixed_in_col
,
const
int
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
4
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
inputs_data
[
2
]
=
input_addr2
;
inputs_data
[
3
]
=
input_addr3
;
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
**
inputs_data
,
const
int
in_num
,
const
int
fixed_in_col
,
const
int
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
static
inline
void
GetBlockDims
(
const
CUDAContext
&
context
,
int
num_rows
,
int
num_cols
,
dim3
*
block_dims
,
dim3
*
grid_dims
)
{
// Set the thread block and grid according to CurrentDeviceId
const
int
kThreadsPerBlock
=
1024
;
int
block_cols
=
kThreadsPerBlock
;
if
(
num_cols
<
kThreadsPerBlock
)
{
// block_cols is aligned by 32.
block_cols
=
((
num_cols
+
31
)
>>
5
)
<<
5
;
template
<
typename
Dtype
>
__global__
void
Concat
(
const
int
num
,
const
Dtype
*
in_data
,
const
int
num_concats
,
const
int
concat_size
,
const
int
top_concat_axis
,
const
int
bottom_concat_axis
,
const
int
offset_concat_axis
,
Dtype
*
out_data
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
num
)
{
const
int
total_concat_size
=
concat_size
*
bottom_concat_axis
;
const
int
concat_num
=
index
/
total_concat_size
;
const
int
concat_index
=
index
%
total_concat_size
;
const
int
top_index
=
concat_index
+
(
concat_num
*
top_concat_axis
+
offset_concat_axis
)
*
concat_size
;
out_data
[
top_index
]
=
in_data
[
index
];
}
int
block_rows
=
kThreadsPerBlock
/
block_cols
;
*
block_dims
=
dim3
(
block_cols
,
block_rows
,
1
);
int
grid_cols
=
(
num_cols
+
block_cols
-
1
)
/
block_cols
;
int
grid_rows
=
std
::
max
(
num_rows
/
block_rows
,
1
);
*
grid_dims
=
dim3
(
grid_cols
,
grid_rows
,
1
);
}
void
ConcatCompute
::
Run
()
{
...
...
@@ -158,105 +49,40 @@ void ConcatCompute::Run() {
std
::
vector
<
Tensor
*>
input
=
param
.
x
;
Tensor
*
output
=
param
.
output
;
auto
*
output_data
=
output
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
int
axis
=
param
.
axis
;
int
in_num
=
input
.
size
();
int
in_row
=
1
;
auto
dim_0
=
input
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
in_row
*=
dim_0
[
i
];
int
inner_size
=
1
;
int
outer_size
=
1
;
auto
input_dims
=
input
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
outer_size
*=
input_dims
[
i
];
}
int
in_col
=
input
[
0
]
->
numel
()
/
in_row
;
int
out_row
=
in_row
,
out_col
=
0
;
std
::
vector
<
const
float
*>
inputs_data
(
in_num
);
std
::
vector
<
int
>
inputs_col
(
in_num
+
1
);
inputs_col
[
0
]
=
0
;
bool
has_same_shape
=
true
;
for
(
int
i
=
0
;
i
<
in_num
;
++
i
)
{
int
t_cols
=
input
[
i
]
->
numel
()
/
in_row
;
if
(
has_same_shape
)
{
if
(
t_cols
!=
in_col
)
has_same_shape
=
false
;
}
out_col
+=
t_cols
;
inputs_col
[
i
+
1
]
=
out_col
;
inputs_data
[
i
]
=
input
[
i
]
->
data
<
float
>
();
}
dim3
block_dims
;
dim3
grid_dims
;
GetBlockDims
(
ctx
,
out_row
,
out_col
,
&
block_dims
,
&
grid_dims
);
const
float
**
dev_ins_data
=
nullptr
;
if
(
!
has_same_shape
||
in_num
<
2
||
in_num
>
4
)
{
float
*
tmp_dev_ins_data
=
nullptr
;
CHECK
(
cudaSuccess
==
cudaMalloc
(
&
tmp_dev_ins_data
,
inputs_data
.
size
()
*
sizeof
(
float
*
)));
CHECK
(
cudaSuccess
==
cudaMemcpy
(
tmp_dev_ins_data
,
static_cast
<
void
*>
(
inputs_data
.
data
()),
inputs_data
.
size
()
*
sizeof
(
float
*
),
cudaMemcpyHostToDevice
));
dev_ins_data
=
reinterpret_cast
<
const
float
**>
(
tmp_dev_ins_data
);
for
(
int
i
=
axis
+
1
;
i
<
input_dims
.
size
();
i
++
)
{
inner_size
*=
input_dims
[
i
];
}
if
(
has_same_shape
)
{
if
(
in_num
==
2
)
{
ConcatKernel
<
float
><<<
grid_dims
,
block_dims
,
0
,
stream
>>>
(
inputs_data
[
0
],
inputs_data
[
1
],
in_col
,
out_row
,
out_col
,
output
->
mutable_data
<
float
>
());
}
else
if
(
in_num
==
3
)
{
ConcatKernel
<
float
><<<
grid_dims
,
block_dims
,
0
,
stream
>>>
(
inputs_data
[
0
],
inputs_data
[
1
],
inputs_data
[
2
],
in_col
,
out_row
,
out_col
,
output
->
mutable_data
<
float
>
());
}
else
if
(
in_num
==
4
)
{
ConcatKernel
<
float
><<<
grid_dims
,
block_dims
,
0
,
stream
>>>
(
inputs_data
[
0
],
inputs_data
[
1
],
inputs_data
[
2
],
inputs_data
[
3
],
in_col
,
out_row
,
out_col
,
output
->
mutable_data
<
float
>
());
}
else
{
ConcatKernel
<
float
><<<
grid_dims
,
block_dims
,
0
,
stream
>>>
(
dev_ins_data
,
in_num
,
in_col
,
out_row
,
out_col
,
output
->
mutable_data
<
float
>
());
cudaFree
(
dev_ins_data
);
}
}
else
{
int
*
tmp_dev_ins_col_data
=
nullptr
;
CHECK
(
cudaSuccess
==
cudaMalloc
(
&
tmp_dev_ins_col_data
,
inputs_col
.
size
()
*
sizeof
(
int
)));
CHECK
(
cudaSuccess
==
cudaMemcpy
(
tmp_dev_ins_col_data
,
static_cast
<
void
*>
(
inputs_col
.
data
()),
inputs_col
.
size
()
*
sizeof
(
int
),
cudaMemcpyHostToDevice
));
int
*
dev_ins_col_data
=
static_cast
<
int
*>
(
tmp_dev_ins_col_data
);
ConcatKernel
<
float
><<<
grid_dims
,
block_dims
,
0
,
stream
>>>
(
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col
.
size
()),
out_row
,
out_col
,
output
->
mutable_data
<
float
>
());
cudaFree
(
dev_ins_data
);
cudaFree
(
dev_ins_col_data
);
int
all_concat_axis
=
param
.
output
->
dims
()[
axis
];
int
in_num
=
input
.
size
();
int
offset_concat_axis
=
0
;
for
(
int
i
=
0
;
i
<
in_num
;
i
++
)
{
auto
*
input_data
=
input
[
i
]
->
data
<
float
>
();
int
input_concat_axis
=
input
[
i
]
->
dims
()[
axis
];
int
input_concat_size
=
input_concat_axis
*
inner_size
;
int
num
=
input_concat_size
*
outer_size
;
int
threads
=
1024
;
int
blocks
=
(
num
+
threads
-
1
)
/
threads
;
Concat
<<<
blocks
,
threads
,
0
,
stream
>>>
(
num
,
input_data
,
outer_size
,
inner_size
,
all_concat_axis
,
input_concat_axis
,
offset_concat_axis
,
output_data
);
offset_concat_axis
+=
input_concat_axis
;
}
cudaError_t
error
=
cudaGetLastError
();
if
(
error
!=
cudaSuccess
)
LOG
(
INFO
)
<<
cudaGetErrorString
(
error
);
}
}
// namespace cuda
...
...
@@ -270,7 +96,6 @@ REGISTER_LITE_KERNEL(concat,
kNCHW
,
paddle
::
lite
::
kernels
::
cuda
::
ConcatCompute
,
def
)
.
BindInput
(
"x"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindInput
(
"axis"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindOutput
(
"output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
Finalize
();
lite/kernels/cuda/concat_compute_test.cc
浏览文件 @
cef884e5
...
...
@@ -126,10 +126,10 @@ TEST(concat, compute_input_multi) {
lite
::
Tensor
tensorC_ref
;
lite
::
Tensor
tensorD_ref
;
DDimLite
ddimA
({
1
,
3
,
1
,
2
});
DDimLite
ddimB
({
1
,
4
,
1
,
2
});
DDimLite
ddimC
({
1
,
5
,
1
,
2
});
DDimLite
ddimD
({
1
,
6
,
1
,
2
});
DDimLite
ddimA
({
1
,
3
,
38
,
38
});
DDimLite
ddimB
({
1
,
4
,
38
,
38
});
DDimLite
ddimC
({
1
,
5
,
38
,
38
});
DDimLite
ddimD
({
1
,
6
,
38
,
38
});
tensorA
.
Resize
(
ddimA
);
tensorB
.
Resize
(
ddimB
);
...
...
@@ -144,6 +144,9 @@ TEST(concat, compute_input_multi) {
tensorC_ref
.
Resize
(
ddimC
);
tensorD_ref
.
Resize
(
ddimD
);
out
.
Resize
({
1
,
18
,
38
,
38
});
out_cpu
.
Resize
({
1
,
18
,
38
,
38
});
out_ref
.
Resize
({
1
,
18
,
38
,
38
});
auto
*
out_data
=
out
.
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
auto
*
out_cpu_data
=
out_cpu
.
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
.
mutable_data
<
float
>
();
...
...
@@ -215,7 +218,7 @@ TEST(concat, compute_input_multi) {
concat_compute_ref
(
param_ref
);
LOG
(
INFO
)
<<
"concat_compute_ref end"
;
for
(
int
i
=
0
;
i
<
out
.
numel
();
i
++
)
{
for
(
int
i
=
0
;
i
<
out
_ref
.
numel
();
i
++
)
{
EXPECT_NEAR
(
out_cpu_data
[
i
],
out_ref_data
[
i
],
1e-5
);
}
}
...
...
lite/kernels/cuda/elementwise_add_compute_test.cc
浏览文件 @
cef884e5
...
...
@@ -27,7 +27,6 @@ using Tensor = lite::Tensor;
static
void
ElementwiseAddRef
(
float
*
x
,
float
*
y
,
float
*
out
,
int
num
)
{
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
out
[
i
]
=
x
[
i
]
+
y
[
i
];
// LOG(INFO) << x[i] << " + " << y[i] << " = " << out[i];
}
}
...
...
lite/kernels/cuda/nearest_interp_compute.cu
浏览文件 @
cef884e5
...
...
@@ -120,9 +120,9 @@ void NearestInterpCompute::Run() {
int
in_chw
=
c
*
in_hw
;
int
out_chw
=
c
*
out_hw
;
int
pixel
N
um
=
n
*
out_chw
;
int
pixel
_n
um
=
n
*
out_chw
;
int
threads
=
512
;
int
blocks
=
(
pixel
N
um
+
threads
-
1
)
/
threads
;
int
blocks
=
(
pixel
_n
um
+
threads
-
1
)
/
threads
;
blocks
=
blocks
>
8
?
8
:
blocks
;
KeNearestNeighborInterp
<<<
blocks
,
threads
,
0
,
stream
>>>
(
input_data
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录