Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
029971b4
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
029971b4
编写于
8月 30, 2019
作者:
P
Pei Yang
提交者:
GitHub
8月 30, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add nearest_interp_cuda kernel, test=develop (#1920)
add nearest_interp cuda kernel for Paddle-Lite
上级
dbabf5c4
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
388 addition
and
1 deletion
+388
-1
lite/api/_paddle_use_kernels.h
lite/api/_paddle_use_kernels.h
+1
-0
lite/kernels/cuda/CMakeLists.txt
lite/kernels/cuda/CMakeLists.txt
+6
-1
lite/kernels/cuda/nearest_interp_compute.cu
lite/kernels/cuda/nearest_interp_compute.cu
+160
-0
lite/kernels/cuda/nearest_interp_compute.h
lite/kernels/cuda/nearest_interp_compute.h
+35
-0
lite/kernels/cuda/nearest_interp_compute_test.cc
lite/kernels/cuda/nearest_interp_compute_test.cc
+186
-0
未找到文件。
lite/api/_paddle_use_kernels.h
浏览文件 @
029971b4
...
...
@@ -155,6 +155,7 @@ USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host);
USE_LITE_KERNEL
(
io_copy_once
,
kCUDA
,
kAny
,
kAny
,
host_to_device
);
USE_LITE_KERNEL
(
io_copy_once
,
kCUDA
,
kAny
,
kAny
,
device_to_host
);
USE_LITE_KERNEL
(
leaky_relu
,
kCUDA
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
nearest_interp
,
kCUDA
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
yolo_box
,
kCUDA
,
kFloat
,
kNCHW
,
def
);
#endif
...
...
lite/kernels/cuda/CMakeLists.txt
浏览文件 @
029971b4
...
...
@@ -7,14 +7,19 @@ message(STATUS "compile with lite CUDA kernels")
nv_library
(
mul_compute_cuda SRCS mul_compute.cc DEPS
${
lite_kernel_deps
}
context
)
lite_cc_library
(
io_copy_compute_cuda SRCS io_copy_compute.cc DEPS
${
lite_kernel_deps
}
)
nv_library
(
leaky_relu_compute_cuda SRCS leaky_relu_compute.cu DEPS
${
lite_kernel_deps
}
)
nv_library
(
nearest_interp_compute_cuda SRCS nearest_interp_compute.cu DEPS
${
lite_kernel_deps
}
)
lite_cc_test
(
nearest_interp_compute_cuda_test SRCS nearest_interp_compute_test.cc DEPS nearest_interp_compute_cuda
)
lite_cc_test
(
leaky_relu_compute_cuda_test SRCS leaky_relu_compute_test.cc DEPS leaky_relu_compute_cuda
)
nv_library
(
yolo_box_compute_cuda SRCS yolo_box_compute.cu DEPS
${
lite_kernel_deps
}
)
lite_cc_test
(
yolo_box_compute_cuda_test SRCS yolo_box_compute_test.cc DEPS yolo_box_compute_cuda
)
set
(
cuda_kernels
mul_compute_cuda
mul_compute_cuda
io_copy_compute_cuda
leaky_relu_compute_cuda
nearest_interp_compute_cuda
yolo_box_compute_cuda
)
...
...
lite/kernels/cuda/nearest_interp_compute.cu
0 → 100644
浏览文件 @
029971b4
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/nearest_interp_compute.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
cuda
{
using
Tensor
=
lite
::
Tensor
;
__global__
void
KeNearestNeighborInterp
(
const
float
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
input_h
,
const
size_t
input_w
,
float
*
out
,
const
size_t
out_img_h
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
num_channels
,
const
float
ratio_h
,
const
float
ratio_w
,
const
bool
align_corners
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
int
out_img_size
=
output_w
/
num_channels
;
int
channel_id
=
out_id_w
/
out_img_size
;
int
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
int
in_img_idy
=
(
align_corners
)
?
static_cast
<
int
>
(
ratio_h
*
out_img_idy
+
0.5
)
:
static_cast
<
int
>
(
ratio_h
*
out_img_idy
);
int
out_img_idx
=
tid
%
out_img_w
;
int
in_img_idx
=
(
align_corners
)
?
static_cast
<
int
>
(
ratio_w
*
out_img_idx
+
0.5
)
:
static_cast
<
int
>
(
ratio_w
*
out_img_idx
);
out
[
tid
]
=
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
in_img_idy
*
in_img_w
+
in_img_idx
];
}
}
void
NearestInterpCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
template
As
<
CUDAContext
>();
auto
stream
=
ctx
.
exec_stream
();
Tensor
*
input
=
param
.
X
;
Tensor
*
output
=
param
.
Out
;
Tensor
*
out_size
=
param
.
OutSize
;
auto
*
input_data
=
input
->
data
<
float
>
();
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
int
out_h
=
param
.
out_h
;
int
out_w
=
param
.
out_w
;
float
scale
=
param
.
scale
;
bool
align_corners
=
param
.
align_corners
;
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
}
if
(
out_size
!=
nullptr
)
{
Tensor
sizes
;
float
*
size_data
=
sizes
.
mutable_data
<
float
>
();
float
*
outsize_data
=
out_size
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
cudaMemcpy
(
size_data
,
outsize_data
,
sizeof
(
float
)
*
2
,
cudaMemcpyDeviceToHost
);
out_h
=
static_cast
<
int
>
(
size_data
[
0
]);
out_w
=
static_cast
<
int
>
(
size_data
[
1
]);
}
auto
output_data
=
output
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
cudaMemcpy
(
output_data
,
input_data
,
sizeof
(
float
)
*
n
*
c
*
in_h
*
in_w
,
cudaMemcpyHostToDevice
);
return
;
}
float
ratio_h
=
0.
f
;
float
ratio_w
=
0.
f
;
if
(
out_h
>
1
)
{
ratio_h
=
(
align_corners
)
?
static_cast
<
float
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
static_cast
<
float
>
(
in_h
)
/
out_h
;
}
if
(
out_w
>
1
)
{
ratio_w
=
(
align_corners
)
?
static_cast
<
float
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
static_cast
<
float
>
(
in_w
)
/
out_w
;
}
int
in_hw
=
in_h
*
in_w
;
int
out_hw
=
out_h
*
out_w
;
int
in_chw
=
c
*
in_hw
;
int
out_chw
=
c
*
out_hw
;
int
pixelNum
=
n
*
out_chw
;
int
threads
=
512
;
int
blocks
=
(
pixelNum
+
threads
-
1
)
/
threads
;
blocks
=
blocks
>
8
?
8
:
blocks
;
KeNearestNeighborInterp
<<<
blocks
,
threads
,
0
,
stream
>>>
(
input_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
);
cudaError_t
error
=
cudaGetLastError
();
if
(
error
!=
cudaSuccess
)
LOG
(
INFO
)
<<
cudaGetErrorString
(
error
);
}
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
nearest_interp
,
kCUDA
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
cuda
::
NearestInterpCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
Finalize
();
lite/kernels/cuda/nearest_interp_compute.h
0 → 100644
浏览文件 @
029971b4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/core/kernel.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
cuda
{
class
NearestInterpCompute
:
public
KernelLite
<
TARGET
(
kCUDA
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
InterpolateParam
;
void
Run
()
override
;
virtual
~
NearestInterpCompute
()
=
default
;
};
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/cuda/nearest_interp_compute_test.cc
0 → 100644
浏览文件 @
029971b4
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/cuda/nearest_interp_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include "lite/fluid/eigen.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
cuda
{
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
lite
::
fluid
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
Tensor
=
lite
::
Tensor
;
static
void
NearestNeighborInterpolate
(
const
Tensor
&
input
,
Tensor
*
output
,
const
float
ratio_h
,
const
float
ratio_w
,
const
int
n
,
const
int
c
,
const
int
out_h
,
const
int
out_w
,
const
bool
align_corners
)
{
auto
input_t
=
EigenTensor
<
float
,
4
>::
From
(
input
);
auto
output_t
=
EigenTensor
<
float
,
4
>::
From
(
*
output
);
for
(
int
k
=
0
;
k
<
out_h
;
k
++
)
{
// loop for images
int
in_k
=
(
align_corners
)
?
static_cast
<
int
>
(
ratio_h
*
k
+
0.5
)
:
static_cast
<
int
>
(
ratio_h
*
k
);
for
(
int
l
=
0
;
l
<
out_w
;
l
++
)
{
int
in_l
=
(
align_corners
)
?
static_cast
<
int
>
(
ratio_w
*
l
+
0.5
)
:
static_cast
<
int
>
(
ratio_w
*
l
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
// loop for batches
for
(
int
j
=
0
;
j
<
c
;
j
++
)
{
// loop for channels
output_t
(
i
,
j
,
k
,
l
)
=
input_t
(
i
,
j
,
in_k
,
in_l
);
}
}
}
}
}
static
void
NearestInterpRef
(
operators
::
InterpolateParam
param
,
Tensor
*
input
,
const
size_t
scale
,
const
size_t
n
,
const
size_t
c
,
const
size_t
in_h
,
const
size_t
in_w
,
Tensor
*
output_size
,
Tensor
*
output
,
size_t
out_h
,
size_t
out_w
)
{
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
}
bool
align_corners
=
param
.
align_corners
;
if
(
output_size
!=
nullptr
)
{
auto
out_size_data
=
output_size
->
mutable_data
<
float
>
();
out_h
=
static_cast
<
int
>
(
out_size_data
[
0
]);
out_w
=
static_cast
<
int
>
(
out_size_data
[
1
]);
}
float
*
input_data
=
input
->
mutable_data
<
float
>
();
LOG
(
INFO
)
<<
*
(
input_data
+
2
);
float
*
output_data
=
output
->
mutable_data
<
float
>
();
LOG
(
INFO
)
<<
*
(
output_data
+
2
);
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
std
::
memcpy
(
output_data
,
input_data
,
sizeof
(
float
)
*
n
*
c
*
in_h
*
in_w
);
LOG
(
INFO
)
<<
*
(
output_data
+
2
);
return
;
}
float
ratio_h
=
0.
f
;
float
ratio_w
=
0.
f
;
if
(
out_h
>
1
)
{
ratio_h
=
(
align_corners
)
?
static_cast
<
float
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
static_cast
<
float
>
(
in_h
)
/
out_h
;
}
if
(
out_w
>
1
)
{
ratio_w
=
(
align_corners
)
?
static_cast
<
float
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
static_cast
<
float
>
(
in_w
)
/
out_w
;
}
NearestNeighborInterpolate
(
*
input
,
output
,
ratio_h
,
ratio_w
,
n
,
c
,
out_h
,
out_w
,
align_corners
);
}
TEST
(
nearest_interp
,
normal
)
{
NearestInterpCompute
nearest_interp_kernel
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
auto
&
context
=
ctx
->
As
<
CUDAContext
>
();
operators
::
InterpolateParam
param
;
Tensor
x
,
osz
,
out
;
Tensor
x_cpu
,
osz_cpu
,
out_cpu
;
Tensor
x_ref
,
osz_ref
,
out_ref
;
int
n
=
1
,
c
=
3
,
in_h
=
4
,
in_w
=
4
;
int
in_chw
=
c
*
in_h
*
in_w
;
int
out_h
=
4
,
out_w
=
4
;
float
scale
=
2.0
;
param
.
out_h
=
out_h
;
param
.
out_w
=
out_w
;
param
.
scale
=
scale
;
param
.
align_corners
=
false
;
x
.
Resize
({
n
,
c
,
in_h
,
in_w
});
osz
.
Resize
({
2
});
out
.
Resize
({
n
,
c
,
out_h
,
out_w
});
x_cpu
.
Resize
({
n
,
c
,
in_h
,
in_w
});
osz_cpu
.
Resize
({
2
});
out_cpu
.
Resize
({
n
,
c
,
out_h
,
out_w
});
x_ref
.
Resize
({
n
,
c
,
in_h
,
in_w
});
osz_ref
.
Resize
({
2
});
out_ref
.
Resize
({
n
,
c
,
out_h
,
out_w
});
auto
*
x_data
=
x
.
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
auto
*
osz_data
=
osz
.
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
auto
*
out_data
=
out
.
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
float
*
x_cpu_data
=
x_cpu
.
mutable_data
<
float
>
();
float
*
osz_cpu_data
=
osz_cpu
.
mutable_data
<
float
>
();
float
*
out_cpu_data
=
out_cpu
.
mutable_data
<
float
>
();
float
*
x_ref_data
=
x_ref
.
mutable_data
<
float
>
();
float
*
osz_ref_data
=
osz_ref
.
mutable_data
<
float
>
();
float
*
out_ref_data
=
out_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x_cpu
.
numel
();
++
i
)
{
x_cpu_data
[
i
]
=
i
+
5.0
;
x_ref_data
[
i
]
=
i
+
5.0
;
}
osz_cpu_data
[
0
]
=
out_h
;
osz_cpu_data
[
1
]
=
out_w
;
osz_ref_data
[
0
]
=
out_h
;
osz_ref_data
[
1
]
=
out_w
;
x
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
x_cpu_data
,
x_cpu
.
dims
());
osz
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
osz_cpu_data
,
osz_cpu
.
dims
());
param
.
X
=
&
x
;
param
.
OutSize
=
&
osz
;
param
.
Out
=
&
out
;
nearest_interp_kernel
.
SetParam
(
param
);
cudaStream_t
stream
;
cudaStreamCreate
(
&
stream
);
context
.
SetExecStream
(
stream
);
nearest_interp_kernel
.
SetContext
(
std
::
move
(
ctx
));
nearest_interp_kernel
.
Launch
();
cudaDeviceSynchronize
();
CopySync
<
TARGET
(
kCUDA
)
>
(
out_cpu_data
,
out_data
,
sizeof
(
float
)
*
out
.
numel
(),
IoDirection
::
DtoH
);
NearestInterpRef
(
param
,
&
x_ref
,
scale
,
n
,
c
,
in_h
,
in_w
,
&
osz_ref
,
&
out_ref
,
out_h
,
out_w
);
for
(
int
i
=
0
;
i
<
out
.
numel
();
i
++
)
{
EXPECT_NEAR
(
out_cpu_data
[
i
],
out_ref_data
[
i
],
1e-5
);
}
}
}
// namespace cuda
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录