gemm.h 18.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaojiaying01 已提交
14 15

#pragma once
16 17
#include <string>
#include "common/log.h"
18
#include "memory/t_malloc.h"
Z
ZhenWang 已提交
19 20 21
#ifdef _OPENMP
#include <omp.h>
#endif
Z
zhaojiaying01 已提交
22

Z
zhaojiaying01 已提交
23 24 25 26
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
#define B(i, j) B[(i)*ldb + (j)]
#define C(i, j) C[(i)*ldc + (j)]
Z
zhaojiaying01 已提交
27

Z
zhaojiaying01 已提交
28
#if __aarch64__
Z
Zhen Wang 已提交
29
#define MR_INT8 4
30
#define NR_INT8 2
Z
zhaojiaying01 已提交
31 32 33
#define MR 6
#define NR 16
#else
34
#define MR_INT8 4
35
#define NR_INT8 2
Z
zhaojiaying01 已提交
36
#define MR 6
37
#define NR 8
Z
zhaojiaying01 已提交
38
#endif
Z
zhaojiaying01 已提交
39

W
wangliu 已提交
40
#define s_min(i, j) ((i) < (j) ? (i) : (j))
Z
zhaojiaying01 已提交
41 42 43 44 45

namespace paddle_mobile {
namespace operators {
namespace math {

46 47 48
class Gemm {
 public:
  /*
Z
zhaojiaying01 已提交
49 50
// 将 A 矩阵分块复制到连续内存(ColMajor)
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
51
           float *buffer);
Z
zhaojiaying01 已提交
52 53 54

// 将 B 矩阵分块复制到连续内存(ColMajor)
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
55
           float *buffer);
56
*/
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  typedef void (Gemm::*FnPack)(int, int, int, const float *, int, float *);
  typedef void (Gemm::*FnAddDot)(int, const float *, const float *, float *,
                                 int);
  FnPack procPackA;
  FnPack procPackB;
  FnAddDot procAddDot;

  // 将 A 矩阵分块复制到连续内存(RowMajor)
  void PackMatrixA_4r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
  void PackMatrixA_6r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
  void PackMatrixA_8r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
  void PackMatrixA_omp_6r(int m, int k, int m_tail, const float *A, int lda,
                          float *buffer);
  void PackMatrixA_omp_8r(int m, int k, int m_tail, const float *A, int lda,
                          float *buffer);

  // 将 B 矩阵分块复制到连续内存(RowMajor)
  void PackMatrixB_8c(int k, int n, int n_tail, const float *B, int ldb,
                      float *buffer);
  void PackMatrixB_12c(int k, int n, int n_tail, const float *B, int ldb,
                       float *buffer);
  void PackMatrixB_16c(int k, int n, int n_tail, const float *B, int ldb,
                       float *buffer);
  void PackMatrixB_omp_8c(int k, int n, int n_tail, const float *B, int ldb,
                          float *buffer);
  void PackMatrixB_omp_12c(int k, int n, int n_tail, const float *B, int ldb,
                           float *buffer);
  void PackMatrixB_omp_16c(int k, int n, int n_tail, const float *B, int ldb,
                           float *buffer);

  // 分块矩阵乘法
  void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
                   float beta, float *c, float *C, int ldc, bool relu);
  void InnerKernelWithBias(int mc, int nc, float alpha, const float *a,
                           const float *b, float beta, float *c, float *C,
                           int ldc, bool relu, float *bias);

  void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
98
                         const float *b, float beta, float *c, float *C,
99 100 101 102 103 104 105 106
                         int ldc, bool relu, float *new_scale, float *new_bias);
  void InnerKernelWithBnAdd(int mc, int nc, float alpha, const float *a,
                            const float *b, float beta, float *c, float *C,
                            int ldc, bool relu, float *new_scale,
                            float *new_bias, float *bias);
  void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b,
                            float *c, float *C, int ldc, float *p,
                            std::string mode, float *bias, float *bias1);
Z
Zhen Wang 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  /*
  // 向量矩阵乘法 (M = 1)
  void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
                    const float *B, int ldb, float beta, float *C, int ldc,
                    bool relu);

  void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
                          int lda, const float *B, int ldb, float beta, float
  *C, int ldc, bool relu, float *new_scale, float *new_bias);
  */

  // 计算一个更小的 C 矩阵分块
  void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot6x8(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot8x12(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot6x16(int k, const float *a, const float *b, float *c, int ldc);

  // 分块矩阵乘法结果回写
  // C = A * B
  void WriteBasic(int mc, int nc, float *c, float *C, int ldc);
  // C = alpha * A * B + beta * C
  void WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + C
  void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + bias
  void WriteWithAddV1(int mc, int nc, float *c, float *C, int ldc, float *bias);
  // C = A * B + C, relu(C)
  void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + C,prelu(C)
  void WriteWithAddPRelu(int mc, int nc, float *c, float *C, int ldc, float *p,
                         std::string mode, float *bias, float *bias1);
  // C = A * B + bias ,relu(C)
  void WriteWithAddReluV1(int mc, int nc, float *c, float *C, int ldc,
142
                          float *bias);
143 144 145 146 147 148 149 150
  // C = A * B, batchnorm(C)
  void WriteWithBn(int mc, int nc, float *c, float *C, int ldc,
                   float *new_scale, float *new_bias);
  // C = A * B, batchnorm(C), relu(C)
  void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
                       float *new_scale, float *new_bias);
  void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
                          float *new_scale, float *new_bias, float *bias1);
Z
Zhen Wang 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  /*
  // 向量矩阵乘法结果回写
  // C = A * B
  void VecWriteBasic(int n, float *c, float *C, int ldc);
  // C = alpha * A * B + beta * C
  void VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc);
  // C = A * B + C
  void VecWriteWithAdd(int n, float *c, float *C, int ldc);
  // C = A * B + C, relu(C)
  void VecWriteWithAddRelu(int n, float *c, float *C, int ldc);
  // C = A * B, batchnorm(C)
  void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
                      float *new_bias);
  // C = A * B, batchnorm(C), relu(C)
  void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
                          float *new_bias);
  */

  // 32位 float 矩阵乘法, 并对结果进行 batchnrom
  void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
                   const float *B, int ldb, float beta, float *C, int ldc,
                   bool relu, float *new_scale, float *new_bias, float *bias);
  void SgemmWithPRelu(int m, int n, int k, const float *A, int lda,
                      const float *B, int ldb, float *C, int ldc, float *p,
                      std::string mode, float *bias, float *bias1);

  // 32位 float 矩阵乘法, 并对结果进行 batchnrom(openmp 多线程版本)
  void SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A,
                       int lda, const float *B, int ldb, float beta, float *C,
                       int ldc, bool relu, float *new_scale, float *new_bias,
                       float *bias);

  void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda,
                          const float *B, int ldb, float *C, int ldc, float *p,
                          std::string mode, float *bias, float *bias1);
Z
zhaojiaying01 已提交
187

Z
Zhen Wang 已提交
188 189
  // 8 bits function cluster begins
  // 8 bits int small block inner product
190 191
  void AddDot4x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);
192 193
  void AddDot4x2(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);
Z
Zhen Wang 已提交
194 195 196
  void AddDot6x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);

Z
Zhen Wang 已提交
197
  // 8 bits int inner product
198
  template <typename Otype>
199
  void InnerKernel(int32_t mc, int32_t nc, float alpha, const int8_t *a,
200
                   const int8_t *b, float beta, int32_t *c, Otype *C,
201
                   int32_t ldc, bool relu);
202
  template <typename Otype>
203
  void InnerKernelWithBias(int32_t mc, int32_t nc, float alpha, const int8_t *a,
204
                           const int8_t *b, float beta, int32_t *c, Otype *C,
205
                           int32_t ldc, bool relu, int32_t *bias);
Z
Zhen Wang 已提交
206

Z
Zhen Wang 已提交
207
  // 8 bits int pack function
208 209
  void PackMatrixA_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                      int32_t lda, int8_t *buffer);
210 211
  void PackMatrixA_4r_16(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                         int32_t lda, int8_t *buffer);
Z
Zhen Wang 已提交
212 213
  void PackMatrixA_6r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                      int32_t lda, int8_t *buffer);
214 215
  void PackMatrixB_2c_16(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                         int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
216 217
  void PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                      int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
218 219 220 221
  void PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                          int32_t lda, int8_t *buffer);
  void PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                          int32_t ldb, int8_t *buffer);
222 223 224 225
  void PackMatrixA_omp_4r_16(int32_t m, int32_t k, int32_t m_tail,
                             const int8_t *A, int32_t lda, int8_t *buffer);
  void PackMatrixB_omp_2c_16(int32_t k, int32_t n, int32_t n_tail,
                             const int8_t *B, int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
226

Z
Zhen Wang 已提交
227
  // 8 bits int matrix product
228
  template <typename Itype, typename Btype, typename Otype>
Z
ZhenWang 已提交
229 230 231 232 233 234 235 236
  void Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha, const Itype *A,
                 int32_t lda, const Itype *B, int32_t ldb, float beta, Otype *C,
                 int32_t ldc, bool relu, Btype *bias);
  template <typename Otype>
  void Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
                 int32_t lda, const int8_t *B, int32_t ldb, float beta,
                 Otype *C, int32_t ldc, bool relu, int32_t *bias);
  template <typename Itype, typename Btype, typename Otype>
237 238 239 240
  void Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const Itype *A,
             int32_t lda, const Itype *B, int32_t ldb, float beta, Otype *C,
             int32_t ldc, bool relu, Btype *bias);
  template <typename Otype>
241
  void Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
242
             int32_t lda, const int8_t *B, int32_t ldb, float beta, Otype *C,
243
             int32_t ldc, bool relu, int32_t *bias);
Z
Zhen Wang 已提交
244
  // 8 bits int write back
Z
Zhen Wang 已提交
245 246
  // C = A * B
  void WriteBasic(int32_t mc, int32_t nc, int32_t *c, int32_t *C, int32_t ldc);
247 248 249 250 251 252
  // C = A * B + bias, scale * relu(C)
  void WriteWithAddReluScale(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
                             int32_t ldc, int32_t *bias, float scale);
  // C = A * B + bias, scale * C
  void WriteWithAddScale(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
                         int32_t ldc, int32_t *bias, float scale);
Z
Zhen Wang 已提交
253

254 255 256 257
 private:
  int MC = 0;
  int KC = 0;
  int NC = 0;
Z
zhaojiaying01 已提交
258

Z
Zhen Wang 已提交
259
  // 32位 float
260 261 262 263
  float *packedA;
  float *packedB;
  float *packedC;
  float *zero;
Z
Zhen Wang 已提交
264

Z
Zhen Wang 已提交
265
  // 8 bits int
Z
Zhen Wang 已提交
266 267
  int8_t *packedA_int8;
  int8_t *packedB_int8;
268
  int32_t *packedC_int32;
Z
Zhen Wang 已提交
269
  int8_t *zero_int8;
270
};
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
// 8 bits int matrix product (m*k x k*n)
template <typename Otype>
void Gemm::Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
                 int32_t lda, const int8_t *B, int32_t ldb, float beta,
                 Otype *C, int32_t ldc, bool relu, int32_t *bias) {
  // L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
  // L2 cache is 0.5~4 Mib (Contex-A72 cluster)
  int32_t L1 = 32 * 1024;
  int32_t L2 = 512 * 1024;

  const int32_t k_complete = (k + 15) - ((k + 15) & 15);
  KC = k_complete;
  MC = L1 / (KC * sizeof(int8_t));
  NC = L2 / (KC * sizeof(int8_t));

  // make sure MC is multiple of MR_INT8, and NC is multiple of NR_INT8
  if (MC == 0) {
    MC = MR_INT8;
  } else {
    int32_t mblock_num = (m + MC - 1) / MC;
    MC = (m + mblock_num - 1) / mblock_num;
    MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
  }
  // DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
  if (NC == 0) {
    NC = NR_INT8;
  } else {
    int32_t nblock_num = (n + NC - 1) / NC;
    NC = (n + nblock_num - 1) / nblock_num;
    NC = (NC + NR_INT8 - 1) / NR_INT8 * NR_INT8;
  }
  //  DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
  packedA_int8 = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
  packedB_int8 = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
  packedC_int32 = static_cast<int32_t *>(
      paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC));
  zero_int8 =
      static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * k));

  memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * k);
  int32_t mc, nc;
  for (int32_t j = 0; j < n; j += NC) {
    nc = s_min(n - j, NC);
    PackMatrixB_2c_16(k, nc, nc % NR_INT8, &B(0, j), ldb, packedB_int8);
    for (int32_t i = 0; i < m; i += MC) {
      mc = s_min(m - i, MC);
      PackMatrixA_4r_16(mc, k, mc % MR_INT8, &A(i, 0), lda, packedA_int8);
      if (bias == nullptr) {
        InnerKernel(mc, nc, alpha, packedA_int8, packedB_int8, beta,
                    packedC_int32, &C(i, j), ldc, relu);
      } else {
        InnerKernelWithBias(mc, nc, alpha, packedA_int8, packedB_int8, beta,
                            packedC_int32, &C(i, j), ldc, relu, bias + i);
      }
    }
  }

  paddle_mobile::memory::Free(packedA_int8);
  paddle_mobile::memory::Free(packedB_int8);
  paddle_mobile::memory::Free(packedC_int32);
  paddle_mobile::memory::Free(zero_int8);
}

Z
ZhenWang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
// 8 bits int matrix product (m*k x k*n), omp version
template <typename Otype>
void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
                     const int8_t *A, int32_t lda, const int8_t *B, int32_t ldb,
                     float beta, Otype *C, int32_t ldc, bool relu,
                     int32_t *bias) {
#ifdef _OPENMP
  int32_t max_threads = omp_get_max_threads();
#else
  int32_t max_threads = 1;
#endif

  int32_t L1 = 64 / max_threads * 1024;
  const int32_t k_complete = (k + 15) - ((k + 15) & 15);
  KC = k_complete;
  zero_int8 =
      static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * k));
  memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * k);
  if (m > n) {
    // 对 A 分块
    MC = L1 / (KC * sizeof(int8_t));
    if (MC == 0) {
      MC = MR_INT8;
    } else {
      int32_t mblock_num = (m + MC - 1) / MC;
      MC = (m + mblock_num - 1) / mblock_num;
      MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
    }
    // 补齐 B
    NC = (n + NR_INT8 - 1) / NR_INT8 * NR_INT8;

    packedB_int8 = static_cast<int8_t *>(
        paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
#if __aarch64__
    // TODO()
#else
    PackMatrixB_omp_2c_16(k, n, n % NR_INT8, B, ldb, packedB_int8);
#endif
    packedA_int8 = static_cast<int8_t *>(
        paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC * max_threads));
  } else {
    // 对 B 分块
    NC = L1 / (KC * sizeof(int8_t));
    if (NC == 0) {
      NC = NR_INT8;
    } else {
      int32_t nblock_num = (n + NC - 1) / NC;
      NC = (n + nblock_num - 1) / nblock_num;
      NC = (NC + NR_INT8 - 1) / NR_INT8 * NR_INT8;
    }
    // 补齐 A
    MC = (m + MR_INT8 - 1) / MR_INT8 * MR_INT8;

    packedA_int8 = static_cast<int8_t *>(
        paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
#if __aarch64__
    // TODO()
#else
    PackMatrixA_omp_4r_16(m, k, m % MR_INT8, A, lda, packedA_int8);
#endif
    packedB_int8 = static_cast<int8_t *>(
        paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC * max_threads));
  }
  packedC_int32 = static_cast<int32_t *>(
      paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC * max_threads));

  if (m > n) {
#pragma omp parallel for
    for (int32_t i = 0; i < m; i += MC) {
#ifdef _OPENMP
      int32_t local_threads = omp_get_thread_num();
#else
      int32_t local_threads = 0;
#endif

      int32_t mc;
      mc = s_min(m - i, MC);
      int8_t *local_A = packedA_int8 + MC * KC * local_threads;
      int32_t *local_C = packedC_int32 + MC * NC * local_threads;
#if __aarch64__
      // TODO()
#else
      PackMatrixA_4r_16(mc, k, mc % MR_INT8, &A(i, 0), lda, local_A);
#endif
      if (bias == nullptr) {
        InnerKernel(mc, n, alpha, local_A, packedB_int8, beta, local_C,
                    &C(i, 0), ldc, relu);
      } else {
        InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta, local_C,
                            &C(i, 0), ldc, relu, bias + i);
      }
    }
  } else {
#pragma omp parallel for
    for (int32_t j = 0; j < n; j += NC) {
#ifdef _OPENMP
      int32_t local_threads = omp_get_thread_num();
#else
      int32_t local_threads = 0;
#endif
      int32_t nc;
      nc = s_min(n - j, NC);
      int8_t *local_B = packedB_int8 + KC * NC * local_threads;
      int32_t *local_C = packedC_int32 + MC * NC * local_threads;
#if __aarch64__
      // TODO()
#else
      PackMatrixB_2c_16(k, nc, nc % NR_INT8, &B(0, j), ldb, local_B);
#endif
      if (bias == nullptr) {
        InnerKernel(m, nc, alpha, packedA_int8, local_B, beta, local_C,
                    &C(0, j), ldc, relu);
      } else {
        InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta, local_C,
                            &C(0, j), ldc, relu, bias);
      }
    }
  }

  paddle_mobile::memory::Free(packedA_int8);
  paddle_mobile::memory::Free(packedB_int8);
  paddle_mobile::memory::Free(packedC_int32);
  paddle_mobile::memory::Free(zero_int8);
}

Z
zhaojiaying01 已提交
462 463 464
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile