gemm.h 14.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaojiaying01 已提交
14 15

#pragma once
16 17
#include <string>
#include "common/log.h"
18
#include "memory/t_malloc.h"
Z
zhaojiaying01 已提交
19

Z
zhaojiaying01 已提交
20 21 22 23
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
#define B(i, j) B[(i)*ldb + (j)]
#define C(i, j) C[(i)*ldc + (j)]
Z
zhaojiaying01 已提交
24

Z
zhaojiaying01 已提交
25
#if __aarch64__
Z
Zhen Wang 已提交
26
#define MR_INT8 4
27
#define NR_INT8 2
Z
zhaojiaying01 已提交
28 29 30
#define MR 6
#define NR 16
#else
31
#define MR_INT8 4
32
#define NR_INT8 2
Z
zhaojiaying01 已提交
33
#define MR 6
34
#define NR 8
Z
zhaojiaying01 已提交
35
#endif
Z
zhaojiaying01 已提交
36

W
wangliu 已提交
37
#define s_min(i, j) ((i) < (j) ? (i) : (j))
Z
zhaojiaying01 已提交
38 39 40 41 42

namespace paddle_mobile {
namespace operators {
namespace math {

43 44 45
class Gemm {
 public:
  /*
Z
zhaojiaying01 已提交
46 47
// 将 A 矩阵分块复制到连续内存(ColMajor)
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
48
           float *buffer);
Z
zhaojiaying01 已提交
49 50 51

// 将 B 矩阵分块复制到连续内存(ColMajor)
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
52
           float *buffer);
53
*/
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  typedef void (Gemm::*FnPack)(int, int, int, const float *, int, float *);
  typedef void (Gemm::*FnAddDot)(int, const float *, const float *, float *,
                                 int);
  FnPack procPackA;
  FnPack procPackB;
  FnAddDot procAddDot;

  // 将 A 矩阵分块复制到连续内存(RowMajor)
  void PackMatrixA_4r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
  void PackMatrixA_6r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
  void PackMatrixA_8r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
  void PackMatrixA_omp_6r(int m, int k, int m_tail, const float *A, int lda,
                          float *buffer);
  void PackMatrixA_omp_8r(int m, int k, int m_tail, const float *A, int lda,
                          float *buffer);

  // 将 B 矩阵分块复制到连续内存(RowMajor)
  void PackMatrixB_8c(int k, int n, int n_tail, const float *B, int ldb,
                      float *buffer);
  void PackMatrixB_12c(int k, int n, int n_tail, const float *B, int ldb,
                       float *buffer);
  void PackMatrixB_16c(int k, int n, int n_tail, const float *B, int ldb,
                       float *buffer);
  void PackMatrixB_omp_8c(int k, int n, int n_tail, const float *B, int ldb,
                          float *buffer);
  void PackMatrixB_omp_12c(int k, int n, int n_tail, const float *B, int ldb,
                           float *buffer);
  void PackMatrixB_omp_16c(int k, int n, int n_tail, const float *B, int ldb,
                           float *buffer);

  // 分块矩阵乘法
  void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
                   float beta, float *c, float *C, int ldc, bool relu);
  void InnerKernelWithBias(int mc, int nc, float alpha, const float *a,
                           const float *b, float beta, float *c, float *C,
                           int ldc, bool relu, float *bias);

  void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
95
                         const float *b, float beta, float *c, float *C,
96 97 98 99 100 101 102 103
                         int ldc, bool relu, float *new_scale, float *new_bias);
  void InnerKernelWithBnAdd(int mc, int nc, float alpha, const float *a,
                            const float *b, float beta, float *c, float *C,
                            int ldc, bool relu, float *new_scale,
                            float *new_bias, float *bias);
  void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b,
                            float *c, float *C, int ldc, float *p,
                            std::string mode, float *bias, float *bias1);
Z
Zhen Wang 已提交
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  /*
  // 向量矩阵乘法 (M = 1)
  void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
                    const float *B, int ldb, float beta, float *C, int ldc,
                    bool relu);

  void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
                          int lda, const float *B, int ldb, float beta, float
  *C, int ldc, bool relu, float *new_scale, float *new_bias);
  */

  // 计算一个更小的 C 矩阵分块
  void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot6x8(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot8x12(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot6x16(int k, const float *a, const float *b, float *c, int ldc);

  // 分块矩阵乘法结果回写
  // C = A * B
  void WriteBasic(int mc, int nc, float *c, float *C, int ldc);
  // C = alpha * A * B + beta * C
  void WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + C
  void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + bias
  void WriteWithAddV1(int mc, int nc, float *c, float *C, int ldc, float *bias);
  // C = A * B + C, relu(C)
  void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + C,prelu(C)
  void WriteWithAddPRelu(int mc, int nc, float *c, float *C, int ldc, float *p,
                         std::string mode, float *bias, float *bias1);
  // C = A * B + bias ,relu(C)
  void WriteWithAddReluV1(int mc, int nc, float *c, float *C, int ldc,
139
                          float *bias);
140 141 142 143 144 145 146 147
  // C = A * B, batchnorm(C)
  void WriteWithBn(int mc, int nc, float *c, float *C, int ldc,
                   float *new_scale, float *new_bias);
  // C = A * B, batchnorm(C), relu(C)
  void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
                       float *new_scale, float *new_bias);
  void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
                          float *new_scale, float *new_bias, float *bias1);
Z
Zhen Wang 已提交
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  /*
  // 向量矩阵乘法结果回写
  // C = A * B
  void VecWriteBasic(int n, float *c, float *C, int ldc);
  // C = alpha * A * B + beta * C
  void VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc);
  // C = A * B + C
  void VecWriteWithAdd(int n, float *c, float *C, int ldc);
  // C = A * B + C, relu(C)
  void VecWriteWithAddRelu(int n, float *c, float *C, int ldc);
  // C = A * B, batchnorm(C)
  void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
                      float *new_bias);
  // C = A * B, batchnorm(C), relu(C)
  void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
                          float *new_bias);
  */

  // 32位 float 矩阵乘法, 并对结果进行 batchnrom
  void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
                   const float *B, int ldb, float beta, float *C, int ldc,
                   bool relu, float *new_scale, float *new_bias, float *bias);
  void SgemmWithPRelu(int m, int n, int k, const float *A, int lda,
                      const float *B, int ldb, float *C, int ldc, float *p,
                      std::string mode, float *bias, float *bias1);

  // 32位 float 矩阵乘法(openmp 多线程版本)
  void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
                 const float *B, int ldb, float beta, float *C, int ldc,
                 bool relu, float *bias);
Z
zhaojiaying01 已提交
179

180 181 182 183 184 185 186 187 188
  // 32位 float 矩阵乘法, 并对结果进行 batchnrom(openmp 多线程版本)
  void SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A,
                       int lda, const float *B, int ldb, float beta, float *C,
                       int ldc, bool relu, float *new_scale, float *new_bias,
                       float *bias);

  void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda,
                          const float *B, int ldb, float *C, int ldc, float *p,
                          std::string mode, float *bias, float *bias1);
Z
zhaojiaying01 已提交
189

Z
Zhen Wang 已提交
190 191
  // 8 bits function cluster begins
  // 8 bits int small block inner product
192 193
  void AddDot4x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);
194 195
  void AddDot4x2(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);
Z
Zhen Wang 已提交
196 197 198
  void AddDot6x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);

Z
Zhen Wang 已提交
199
  // 8 bits int inner product
200
  template <typename Otype>
201
  void InnerKernel(int32_t mc, int32_t nc, float alpha, const int8_t *a,
202
                   const int8_t *b, float beta, int32_t *c, Otype *C,
203
                   int32_t ldc, bool relu);
204
  template <typename Otype>
205
  void InnerKernelWithBias(int32_t mc, int32_t nc, float alpha, const int8_t *a,
206
                           const int8_t *b, float beta, int32_t *c, Otype *C,
207
                           int32_t ldc, bool relu, int32_t *bias);
Z
Zhen Wang 已提交
208

Z
Zhen Wang 已提交
209
  // 8 bits int pack function
210 211
  void PackMatrixA_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                      int32_t lda, int8_t *buffer);
212 213
  void PackMatrixA_4r_16(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                         int32_t lda, int8_t *buffer);
Z
Zhen Wang 已提交
214 215
  void PackMatrixA_6r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                      int32_t lda, int8_t *buffer);
216 217
  void PackMatrixB_2c_16(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                         int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
218 219
  void PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                      int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
220 221 222 223
  void PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                          int32_t lda, int8_t *buffer);
  void PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                          int32_t ldb, int8_t *buffer);
224 225 226 227
  void PackMatrixA_omp_4r_16(int32_t m, int32_t k, int32_t m_tail,
                             const int8_t *A, int32_t lda, int8_t *buffer);
  void PackMatrixB_omp_2c_16(int32_t k, int32_t n, int32_t n_tail,
                             const int8_t *B, int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
228

Z
Zhen Wang 已提交
229
  // 8 bits int matrix product
230 231 232 233 234
  template <typename Itype, typename Btype, typename Otype>
  void Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const Itype *A,
             int32_t lda, const Itype *B, int32_t ldb, float beta, Otype *C,
             int32_t ldc, bool relu, Btype *bias);
  template <typename Otype>
235
  void Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
236
             int32_t lda, const int8_t *B, int32_t ldb, float beta, Otype *C,
237
             int32_t ldc, bool relu, int32_t *bias);
238

239 240 241
  void Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
                 int32_t lda, const int8_t *B, int32_t ldb, float beta,
                 int32_t *C, int32_t ldc, bool relu, int32_t *bias);
Z
Zhen Wang 已提交
242
  // 8 bits int write back
Z
Zhen Wang 已提交
243 244
  // C = A * B
  void WriteBasic(int32_t mc, int32_t nc, int32_t *c, int32_t *C, int32_t ldc);
245 246 247 248 249 250
  // C = A * B + bias, scale * relu(C)
  void WriteWithAddReluScale(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
                             int32_t ldc, int32_t *bias, float scale);
  // C = A * B + bias, scale * C
  void WriteWithAddScale(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
                         int32_t ldc, int32_t *bias, float scale);
Z
Zhen Wang 已提交
251

252 253 254 255
 private:
  int MC = 0;
  int KC = 0;
  int NC = 0;
Z
zhaojiaying01 已提交
256

Z
Zhen Wang 已提交
257
  // 32位 float
258 259 260 261
  float *packedA;
  float *packedB;
  float *packedC;
  float *zero;
Z
Zhen Wang 已提交
262

Z
Zhen Wang 已提交
263
  // 8 bits int
Z
Zhen Wang 已提交
264 265
  int8_t *packedA_int8;
  int8_t *packedB_int8;
266
  int32_t *packedC_int32;
Z
Zhen Wang 已提交
267
  int8_t *zero_int8;
268
};
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
// 8 bits int matrix product (m*k x k*n)
template <typename Otype>
void Gemm::Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
                 int32_t lda, const int8_t *B, int32_t ldb, float beta,
                 Otype *C, int32_t ldc, bool relu, int32_t *bias) {
  // L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
  // L2 cache is 0.5~4 Mib (Contex-A72 cluster)
  int32_t L1 = 32 * 1024;
  int32_t L2 = 512 * 1024;

  const int32_t k_complete = (k + 15) - ((k + 15) & 15);
  KC = k_complete;
  MC = L1 / (KC * sizeof(int8_t));
  NC = L2 / (KC * sizeof(int8_t));

  // make sure MC is multiple of MR_INT8, and NC is multiple of NR_INT8
  if (MC == 0) {
    MC = MR_INT8;
  } else {
    int32_t mblock_num = (m + MC - 1) / MC;
    MC = (m + mblock_num - 1) / mblock_num;
    MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
  }
  // DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
  if (NC == 0) {
    NC = NR_INT8;
  } else {
    int32_t nblock_num = (n + NC - 1) / NC;
    NC = (n + nblock_num - 1) / nblock_num;
    NC = (NC + NR_INT8 - 1) / NR_INT8 * NR_INT8;
  }
  //  DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
  packedA_int8 = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
  packedB_int8 = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
  packedC_int32 = static_cast<int32_t *>(
      paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC));
  zero_int8 =
      static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * k));

  memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * k);
  int32_t mc, nc;
  for (int32_t j = 0; j < n; j += NC) {
    nc = s_min(n - j, NC);
    PackMatrixB_2c_16(k, nc, nc % NR_INT8, &B(0, j), ldb, packedB_int8);
    for (int32_t i = 0; i < m; i += MC) {
      mc = s_min(m - i, MC);
      PackMatrixA_4r_16(mc, k, mc % MR_INT8, &A(i, 0), lda, packedA_int8);
      if (bias == nullptr) {
        InnerKernel(mc, nc, alpha, packedA_int8, packedB_int8, beta,
                    packedC_int32, &C(i, j), ldc, relu);
      } else {
        InnerKernelWithBias(mc, nc, alpha, packedA_int8, packedB_int8, beta,
                            packedC_int32, &C(i, j), ldc, relu, bias + i);
      }
    }
  }

  paddle_mobile::memory::Free(packedA_int8);
  paddle_mobile::memory::Free(packedB_int8);
  paddle_mobile::memory::Free(packedC_int32);
  paddle_mobile::memory::Free(zero_int8);
}

Z
zhaojiaying01 已提交
335 336 337
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile