Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
1c893a02
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1c893a02
编写于
10月 18, 2018
作者:
Z
Zhen Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gemm_int8 UT
上级
95e6a2ee
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
595 addition
and
445 deletion
+595
-445
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+0
-386
src/operators/math/gemm.h
src/operators/math/gemm.h
+44
-34
src/operators/math/gemm_int8.cpp
src/operators/math/gemm_int8.cpp
+431
-0
src/operators/math/math_function.h
src/operators/math/math_function.h
+1
-1
src/operators/math/math_function_int8.cpp
src/operators/math/math_function_int8.cpp
+64
-0
test/common/test_gemm_int8_accuracy.cpp
test/common/test_gemm_int8_accuracy.cpp
+12
-11
test/common/test_gemm_perf.cpp
test/common/test_gemm_perf.cpp
+43
-13
未找到文件。
src/operators/math/gemm.cpp
浏览文件 @
1c893a02
...
...
@@ -142,61 +142,6 @@ void Gemm::PackMatrixA_4r(int m, int k, int m_tail, const float *A, int lda,
}
}
// 8位 int PackMatrixA函数
void
Gemm
::
PackMatrixA_6r
(
int
m
,
int
k
,
int
m_tail
,
const
int8_t
*
A
,
int
lda
,
int8_t
*
buffer
)
{
const
int
i_length
=
m
-
m_tail
;
for
(
int
i
=
0
;
i
<
i_length
;
i
+=
MR
)
{
const
int8_t
*
a0
=
A
+
i
*
lda
;
const
int8_t
*
a1
=
A
+
(
i
+
1
)
*
lda
;
const
int8_t
*
a2
=
A
+
(
i
+
2
)
*
lda
;
const
int8_t
*
a3
=
A
+
(
i
+
3
)
*
lda
;
const
int8_t
*
a4
=
A
+
(
i
+
4
)
*
lda
;
const
int8_t
*
a5
=
A
+
(
i
+
5
)
*
lda
;
int8_t
*
local_buffer
=
buffer
+
i
*
k
;
for
(
int
j
=
0
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
*
local_buffer
++
=
*
a1
++
;
*
local_buffer
++
=
*
a2
++
;
*
local_buffer
++
=
*
a3
++
;
*
local_buffer
++
=
*
a4
++
;
*
local_buffer
++
=
*
a5
++
;
}
}
if
(
m_tail
!=
0
)
{
const
int8_t
*
a0
=
&
A
(
i_length
,
0
);
const
int8_t
*
a1
=
a0
+
lda
;
const
int8_t
*
a2
=
a0
+
2
*
lda
;
const
int8_t
*
a3
=
a0
+
3
*
lda
;
const
int8_t
*
a4
=
a0
+
4
*
lda
;
const
int8_t
*
a5
=
a0
+
5
*
lda
;
int8_t
*
local_buffer
=
buffer
+
i_length
*
k
;
switch
(
m_tail
)
{
case
1
:
a1
=
zero_int8
;
case
2
:
a2
=
zero_int8
;
case
3
:
a3
=
zero_int8
;
case
4
:
a4
=
zero_int8
;
case
5
:
a5
=
zero_int8
;
break
;
default:
break
;
}
for
(
int
j
=
0
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
*
local_buffer
++
=
*
a1
++
;
*
local_buffer
++
=
*
a2
++
;
*
local_buffer
++
=
*
a3
++
;
*
local_buffer
++
=
*
a4
++
;
*
local_buffer
++
=
*
a5
++
;
}
}
}
void
Gemm
::
PackMatrixA_6r
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
const
int
i_length
=
m
-
m_tail
;
...
...
@@ -439,48 +384,6 @@ void Gemm::PackMatrixA_omp_8r(int m, int k, int m_tail, const float *A, int lda,
}
}
// 8位 int PackMatrixB函数
void
Gemm
::
PackMatrixB_8c
(
int
k
,
int
n
,
int
n_tail
,
const
int8_t
*
B
,
int
ldb
,
int8_t
*
buffer
)
{
const
int
j_length
=
n
-
n_tail
;
for
(
int
j
=
0
;
j
<
j_length
;
j
+=
NR
)
{
int8_t
*
local_buffer
=
buffer
+
j
*
k
;
for
(
int
i
=
0
;
i
<
k
;
++
i
)
{
const
int8_t
*
b0
=
&
B
(
i
,
j
);
#if __ARM_NEON
asm
volatile
(
// "pld [%[b0]] \n\t"
"vld1.s8 {d0}, [%[b0]]
\n\t
"
"vst1.s8 {d0}, [%[local_buffer]]!
\n\t
"
:
[
local_buffer
]
"+r"
(
local_buffer
)
:
[
b0
]
"r"
(
b0
)
:
"memory"
,
"q0"
);
#else
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
#endif // __ARM_NEON
}
}
if
(
n_tail
!=
0
)
{
int8_t
*
local_buffer
=
buffer
+
j_length
*
k
;
for
(
int
i
=
0
;
i
<
k
;
++
i
)
{
const
int8_t
*
b0
=
&
B
(
i
,
j_length
);
for
(
int
j
=
j_length
;
j
<
n
;
++
j
)
{
*
local_buffer
++
=
*
b0
++
;
}
for
(
int
j
=
n
;
j
<
j_length
+
NR
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
}
// 将B矩阵分块复制到连续内存(RowMajor)
void
Gemm
::
PackMatrixB_8c
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
...
...
@@ -745,42 +648,6 @@ void Gemm::InnerKernel(int mc, int nc, float alpha, const float *a,
}
}
// 8位 int 分块矩阵乘法
void
Gemm
::
InnerKernelWithBias
(
int
mc
,
int
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int
*
c
,
int
*
C
,
int
ldc
,
bool
relu
,
int8_t
*
bias
)
{
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
AddDot6x8
(
KC
,
a
+
i
*
KC
,
b
+
j
*
KC
,
c
+
i
*
NC
+
j
,
NC
);
}
}
if
(
alpha
!=
1
)
{
WriteWithAlphaBeta
(
mc
,
nc
,
c
,
C
,
ldc
);
return
;
}
if
(
beta
==
0
)
{
WriteBasic
(
mc
,
nc
,
c
,
C
,
ldc
);
return
;
}
if
(
beta
==
1
&&
!
relu
)
{
if
(
bias
==
nullptr
)
{
WriteWithAdd
(
mc
,
nc
,
c
,
C
,
ldc
);
}
else
{
WriteWithAddV1
(
mc
,
nc
,
c
,
C
,
ldc
,
bias
);
}
return
;
}
if
(
beta
==
1
&&
relu
)
{
if
(
bias
==
nullptr
)
{
WriteWithAddRelu
(
mc
,
nc
,
c
,
C
,
ldc
);
}
else
{
WriteWithAddReluV1
(
mc
,
nc
,
c
,
C
,
ldc
,
bias
);
}
return
;
}
}
// 分块矩阵乘法
void
Gemm
::
InnerKernelWithBias
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
...
...
@@ -2007,63 +1874,6 @@ void Gemm::AddDot4x8(int k, const float *a, const float *b, float *c, int ldc) {
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
}
// C = A * B, 8位 int
void
Gemm
::
WriteBasic
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
)
{
int
nc1
=
nc
>>
4
;
int
_nc1
=
nc
&
15
;
int
step
=
sizeof
(
int
)
*
ldc
;
int
step1
=
sizeof
(
int
)
*
(
NC
-
(
nc1
<<
4
));
int
volatile
m
=
mc
;
int
*
volatile
c_ptr
,
*
volatile
C_ptr
;
int
*
C0
,
*
c0
;
c_ptr
=
c
;
C_ptr
=
C
;
if
(
nc1
>
0
)
{
asm
volatile
(
"subs %[mc], %[mc], #1
\n\t
"
"blt end_mc_%=
\n\t
"
"loop_mc_%=:
\n\t
"
"mov r6, %[C_ptr]
\n\t
"
"mov r5, %[nc1]
\n\t
"
"subs r5, r5, #1
\n\t
"
"blt end_nc1_%=
\n\t
"
"loop_nc1_%=:
\n\t
"
"vld1.32 {q0, q1}, [%[c_ptr]]!
\n\t
"
"vst1.32 {q0, q1}, [r6]!
\n\t
"
"vld1.32 {q2, q3}, [%[c_ptr]]!
\n\t
"
"vst1.32 {q2, q3}, [r6]!
\n\t
"
"subs r5, r5, #1
\n\t
"
"bge loop_nc1_%=
\n\t
"
"end_nc1_%=:
\n\t
"
"add %[C_ptr], %[C_ptr], %[step]
\n\t
"
"add %[c_ptr], %[c_ptr], %[step1]
\n\t
"
"subs %[mc], %[mc], #1
\n\t
"
"bge loop_mc_%=
\n\t
"
"end_mc_%=:
\n\t
"
:
:
[
C_ptr
]
"r"
(
C_ptr
),
[
c_ptr
]
"r"
(
c_ptr
),
[
mc
]
"r"
(
m
),
[
nc1
]
"r"
(
nc1
),
[
step
]
"r"
(
step
),
[
step1
]
"r"
(
step1
)
:
"memory"
,
"r5"
,
"r6"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
);
}
if
(
_nc1
!=
0
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
++
)
{
C0
=
C_ptr
+
nc1
*
16
+
i
*
ldc
;
c0
=
c_ptr
+
nc1
*
16
+
i
*
NC
;
for
(
int
j
=
0
;
j
<
_nc1
;
j
++
)
{
*
C0
++
=
*
c0
++
;
}
}
}
}
// C = A * B
void
Gemm
::
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
...
...
@@ -2121,14 +1931,9 @@ void Gemm::WriteBasic(int mc, int nc, float *c, float *C, int ldc) {
}
}
// C = alpha * A * B + beta * C
void
Gemm
::
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
)
{}
// C = alpha * A * B + beta * C
void
Gemm
::
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
// C = A * B + C
void
Gemm
::
WriteWithAdd
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
)
{}
// C = A * B + C
void
Gemm
::
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
...
...
@@ -2193,9 +1998,6 @@ void Gemm::WriteWithAdd(int mc, int nc, float *c, float *C, int ldc) {
}
}
// C = A * B + bias
void
Gemm
::
WriteWithAddV1
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
,
int8_t
*
bias
)
{}
// C = A * B + bias
void
Gemm
::
WriteWithAddV1
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
bias
)
{
...
...
@@ -2235,9 +2037,6 @@ void Gemm::WriteWithAddV1(int mc, int nc, float *c, float *C, int ldc,
}
}
// C = A * B + C, relu(C)
void
Gemm
::
WriteWithAddRelu
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
)
{}
// C = A * B + C, relu(C)
void
Gemm
::
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
...
...
@@ -2311,9 +2110,6 @@ void Gemm::WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc) {
}
}
}
// C = A * B + bias, relu(C)
void
Gemm
::
WriteWithAddReluV1
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
,
int8_t
*
bias
)
{}
// C = A * B + bias, relu(C)
void
Gemm
::
WriteWithAddReluV1
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
...
...
@@ -3200,69 +2996,6 @@ void Gemm::WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
#endif // __ARM_NEON
// 8位 int 矩阵乘法 (m*k与k*n的乘积)
void
Gemm
::
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
int8_t
*
A
,
int
lda
,
const
int8_t
*
B
,
int
ldb
,
float
beta
,
int
*
C
,
int
ldc
,
bool
relu
,
int8_t
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
32
*
1024
;
int
L2
=
512
*
1024
;
KC
=
k
;
MC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
NC
=
L2
/
(
KC
*
sizeof
(
int8_t
));
// make sure MC is multiple of MR, and NC is multiple of NR
if
(
MC
==
0
)
{
MC
=
MR
;
}
else
{
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR
-
1
)
/
MR
*
MR
;
}
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
if
(
NC
==
0
)
{
NC
=
NR
;
}
else
{
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
}
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
MC
*
KC
));
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
));
packedC_int8
=
static_cast
<
int
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int
)
*
MC
*
NC
));
zero_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
KC
);
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB_int8
);
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA_int8
);
if
(
bias
==
nullptr
)
{
InnerKernelWithBias
(
mc
,
nc
,
alpha
,
packedA_int8
,
packedB_int8
,
beta
,
packedC_int8
,
&
C
(
i
,
j
),
ldc
,
relu
,
nullptr
);
}
else
{
InnerKernelWithBias
(
mc
,
nc
,
alpha
,
packedA_int8
,
packedB_int8
,
beta
,
packedC_int8
,
&
C
(
i
,
j
),
ldc
,
relu
,
bias
+
i
);
}
}
}
paddle_mobile
::
memory
::
Free
(
packedA_int8
);
paddle_mobile
::
memory
::
Free
(
packedB_int8
);
paddle_mobile
::
memory
::
Free
(
packedC_int8
);
paddle_mobile
::
memory
::
Free
(
zero_int8
);
}
// 32位 float 矩阵乘法
void
Gemm
::
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
...
...
@@ -3856,125 +3589,6 @@ void Gemm::SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda,
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
Gemm
::
AddDot6x8
(
int
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int
*
c
,
int
ldc
)
{
#if __ARM_NEON
const
int8_t
*
a_ptr
,
*
b_ptr
;
a_ptr
=
a
;
b_ptr
=
b
;
int
kc1
=
k
>>
1
;
int
kc2
=
k
&
1
;
int
step
=
sizeof
(
int
)
*
ldc
;
asm
volatile
(
// q4-q15: save 48 results
"vmov.s8 q4, #0
\n\t
"
"vmov.s8 q5, #0
\n\t
"
"vmov.s8 q6, #0
\n\t
"
"vmov.s8 q7, #0
\n\t
"
"vmov.s8 q8, #0
\n\t
"
"vmov.s8 q9, #0
\n\t
"
"vmov.s8 q10, #0
\n\t
"
"vmov.s8 q11, #0
\n\t
"
"vmov.s8 q12, #0
\n\t
"
"vmov.s8 q13, #0
\n\t
"
"vmov.s8 q14, #0
\n\t
"
"vmov.s8 q15, #0
\n\t
"
"mov r0, #6
\n\t
"
"subs %[kc1], %[kc1], #1
\n\t
"
"blt 1f
\n\t
"
"0:
\n\t
"
"vld1.s8 {d0}, [%[a_ptr]], r0
\n\t
"
// A col0
"vld1.s8 {d1}, [%[a_ptr]], r0
\n\t
"
// A col1, q0 used
"vld1.s8 {d2-d3}, [%[b_ptr]]!
\n\t
"
// B row0, B row1, q1 used
"vmov.s8 q2, #0
\n\t
"
// q2 used
"vdup.s8 d6, d0[0]
\n\t
"
// q3 used(but d7 is free)
"vmlal.s8 q2, d2, d6
\n\t
"
// A col00 * B row0
"vdup.s8 d6, d1[0]
\n\t
"
"vmlal.s8 q2, d3, d6
\n\t
"
// A col10 * B row1, q3 free
"vaddw.s16 q4, q4, d4
\n\t
"
"vaddw.s16 q5, q5, d5
\n\t
"
// res row 0
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[1]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vdup.s8 d6, d1[1]
\n\t
"
"vmlal.s8 q2, d3, d6
\n\t
"
"vaddw.s16 q6, q6, d4
\n\t
"
"vaddw.s16 q7, q7, d5
\n\t
"
// res row 1
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[2]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vdup.s8 d6, d1[2]
\n\t
"
"vmlal.s8 q2, d3, d6
\n\t
"
"vaddw.s16 q8, q8, d4
\n\t
"
"vaddw.s16 q9, q9, d5
\n\t
"
// res row 2
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[3]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vdup.s8 d6, d1[3]
\n\t
"
"vmlal.s8 q2, d3, d6
\n\t
"
"vaddw.s16 q10, q10, d4
\n\t
"
"vaddw.s16 q11, q11, d5
\n\t
"
// res row 3
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[4]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vdup.s8 d6, d1[4]
\n\t
"
"vmlal.s8 q2, d3, d6
\n\t
"
"vaddw.s16 q12, q12, d4
\n\t
"
"vaddw.s16 q13, q13, d5
\n\t
"
// res row 4
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[5]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vdup.s8 d6, d1[5]
\n\t
"
"vmlal.s8 q2, d3, d6
\n\t
"
"vaddw.s16 q14, q14, d4
\n\t
"
"vaddw.s16 q15, q15, d5
\n\t
"
// res row 5
"subs %[kc1], %[kc1], #1
\n\t
"
"bge 0b
\n\t
"
"1:
\n\t
"
// odd, last row
"subs %[kc2], %[kc2], #1
\n\t
"
"blt 2f
\n\t
"
"vld1.s8 {d0}, [%[a_ptr]]
\n\t
"
"vld1.s8 {d1}, [%[b_ptr]]
\n\t
"
"vdup.s8 d2, d0[0]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q4, q4, d4
\n\t
"
"vaddw.s16 q5, q5, d5
\n\t
"
// res row 0
"vdup.s8 d2, d0[1]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q6, q6, d4
\n\t
"
"vaddw.s16 q7, q7, d5
\n\t
"
// res row 1
"vdup.s8 d2, d0[2]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q8, q8, d4
\n\t
"
"vaddw.s16 q9, q9, d5
\n\t
"
// res row 2
"vdup.s8 d2, d0[3]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q10, q10, d4
\n\t
"
"vaddw.s16 q11, q11, d5
\n\t
"
// res row 3
"vdup.s8 d2, d0[4]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q12, q12, d4
\n\t
"
"vaddw.s16 q13, q13, d5
\n\t
"
// res row 4
"vdup.s8 d2, d0[5]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q14, q14, d4
\n\t
"
"vaddw.s16 q15, q15, d5
\n\t
"
// res row 4
"2:
\n\t
"
"vst1.32 {q4, q5}, [%[c]], %[step]
\n\t
"
"vst1.32 {q6, q7}, [%[c]], %[step]
\n\t
"
"vst1.32 {q8, q9}, [%[c]], %[step]
\n\t
"
"vst1.32 {q10, q11}, [%[c]], %[step]
\n\t
"
"vst1.32 {q12, q13}, [%[c]], %[step]
\n\t
"
"vst1.32 {q14, q15}, [%[c]]
\n\t
"
:
:
[
a_ptr
]
"r"
(
a_ptr
),
[
b_ptr
]
"r"
(
b_ptr
),
[
c
]
"r"
(
c
),
[
kc1
]
"r"
(
kc1
),
[
kc2
]
"r"
(
kc2
),
[
step
]
"r"
(
step
)
:
"cc"
,
"memory"
,
"r0"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
#endif
}
void
Gemm
::
AddDot6x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
#if __ARM_NEON
#if __aarch64__
...
...
src/operators/math/gemm.h
浏览文件 @
1c893a02
...
...
@@ -80,12 +80,6 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
void
PackMatrixB_omp_16c
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
);
// 8位 int
void
PackMatrixA_6r
(
int
m
,
int
k
,
int
m_tail
,
const
int8_t
*
A
,
int
lda
,
int8_t
*
buffer
);
void
PackMatrixB_8c
(
int
k
,
int
n
,
int
n_tail
,
const
int8_t
*
B
,
int
ldb
,
int8_t
*
buffer
);
// 分块矩阵乘法
void
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
);
...
...
@@ -104,11 +98,6 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
p
,
std
::
string
mode
,
float
*
bias
,
float
*
bias1
);
// 8位 int
void
InnerKernelWithBias
(
int
mc
,
int
nc
,
float
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
float
beta
,
int
*
c
,
int
*
C
,
int
ldc
,
bool
relu
,
int8_t
*
bias
);
/*
// 向量矩阵乘法 (M = 1)
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
...
...
@@ -127,8 +116,6 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
void
AddDot8x12
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot6x16
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot6x8
(
int
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int
*
c
,
int
ldc
);
// 分块矩阵乘法结果回写
// C = A * B
void
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
...
...
@@ -154,20 +141,7 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float
*
new_scale
,
float
*
new_bias
);
void
WriteWithBnAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
,
float
*
bias1
);
// 8位 int 分块矩阵乘法结果回写
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
);
// C = A * B
void
WriteBasic
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
);
// C = A * B + C
void
WriteWithAdd
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
);
// C = A * B + bias
void
WriteWithAddV1
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
,
int8_t
*
bias
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
);
// C = A * B + bias, relu(C)
void
WriteWithAddReluV1
(
int
mc
,
int
nc
,
int
*
c
,
int
*
C
,
int
ldc
,
int8_t
*
bias
);
/*
// 向量矩阵乘法结果回写
// C = A * B
...
...
@@ -186,11 +160,6 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float *new_bias);
*/
// 8位 int 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
int8_t
*
A
,
int
lda
,
const
int8_t
*
B
,
int
ldb
,
float
beta
,
int
*
C
,
int
ldc
,
bool
relu
,
int8_t
*
bias
);
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
...
...
@@ -219,6 +188,47 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
const
float
*
B
,
int
ldb
,
float
*
C
,
int
ldc
,
float
*
p
,
std
::
string
mode
,
float
*
bias
,
float
*
bias1
);
/************************ 8 bit function cluster ************************/
// 8 bit int small block inner product
void
AddDot6x8
(
int32_t
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int32_t
*
c
,
int32_t
ldc
);
// 8 bit int inner product
void
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
int8_t
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int8_t
beta
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
);
// 8 bit int pack function
void
PackMatrixA_6r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
);
void
PackMatrixB_8c
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
);
// 8 bit int matrix product
void
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
int8_t
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
);
// 8 bit int write back
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B
void
WriteBasic
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + C
void
WriteWithAdd
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + bias
void
WriteWithAddV1
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
int8_t
*
bias
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
);
// C = A * B + bias, relu(C)
void
WriteWithAddReluV1
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
int8_t
*
bias
);
private:
int
MC
=
0
;
int
KC
=
0
;
...
...
@@ -230,10 +240,10 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float
*
packedC
;
float
*
zero
;
// 8
位
int
// 8
bit
int
int8_t
*
packedA_int8
;
int8_t
*
packedB_int8
;
int
*
packedC_int8
;
int
32_t
*
packedC_int8
;
int8_t
*
zero_int8
;
};
...
...
src/operators/math/gemm_int8.cpp
0 → 100644
浏览文件 @
1c893a02
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string.h>
#include "common/log.h"
#include "memory/t_malloc.h"
#include "operators/math/gemm.h"
#if __ARM_NEON
#include <arm_neon.h>
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
// 8 bit int small block inner product
void
Gemm
::
AddDot6x8
(
int32_t
k
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int32_t
*
c
,
int32_t
ldc
)
{
#if __ARM_NEON
const
int8_t
*
a_ptr
,
*
b_ptr
;
a_ptr
=
a
;
b_ptr
=
b
;
int32_t
kc1
=
k
>>
1
;
int32_t
kc2
=
k
&
1
;
int32_t
step
=
sizeof
(
int32_t
)
*
ldc
;
asm
volatile
(
// q4-q15: save 48 results
"pld [%[a_ptr]]
\n\t
"
"pld [%[b_ptr]]
\n\t
"
"vmov.s8 q4, #0
\n\t
"
"vmov.s8 q5, #0
\n\t
"
"vmov.s8 q6, #0
\n\t
"
"vmov.s8 q7, #0
\n\t
"
"vmov.s8 q8, #0
\n\t
"
"vmov.s8 q9, #0
\n\t
"
"vmov.s8 q10, #0
\n\t
"
"vmov.s8 q11, #0
\n\t
"
"vmov.s8 q12, #0
\n\t
"
"vmov.s8 q13, #0
\n\t
"
"vmov.s8 q14, #0
\n\t
"
"vmov.s8 q15, #0
\n\t
"
"mov r0, #6
\n\t
"
"subs %[kc1], %[kc1], #1
\n\t
"
"blt 1f
\n\t
"
"0:
\n\t
"
"pld [%[a_ptr], #64]
\n\t
"
"pld [%[b_ptr], #64]
\n\t
"
"vld1.s8 {d0}, [%[a_ptr]], r0
\n\t
"
// A col0
"vld1.s8 {d1}, [%[a_ptr]], r0
\n\t
"
// A col1, q0 used
"vld1.s8 {d2-d3}, [%[b_ptr]]!
\n\t
"
// B row0, B row1, q1 used
"vmov.s8 q2, #0
\n\t
"
// q2 used
"vdup.s8 d6, d0[0]
\n\t
"
"vdup.s8 d7, d1[0]
\n\t
"
// q3 used
"vmlal.s8 q2, d2, d6
\n\t
"
// A col00 * B row0
"vmlal.s8 q2, d3, d7
\n\t
"
// A col10 * B row1, q3 free
"vaddw.s16 q4, q4, d4
\n\t
"
"vaddw.s16 q5, q5, d5
\n\t
"
// res row 0
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[1]
\n\t
"
"vdup.s8 d7, d1[1]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vmlal.s8 q2, d3, d7
\n\t
"
"vaddw.s16 q6, q6, d4
\n\t
"
"vaddw.s16 q7, q7, d5
\n\t
"
// res row 1
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[2]
\n\t
"
"vdup.s8 d7, d1[2]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vmlal.s8 q2, d3, d7
\n\t
"
"vaddw.s16 q8, q8, d4
\n\t
"
"vaddw.s16 q9, q9, d5
\n\t
"
// res row 2
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[3]
\n\t
"
"vdup.s8 d7, d1[3]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vmlal.s8 q2, d3, d7
\n\t
"
"vaddw.s16 q10, q10, d4
\n\t
"
"vaddw.s16 q11, q11, d5
\n\t
"
// res row 3
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[4]
\n\t
"
"vdup.s8 d7, d1[4]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vmlal.s8 q2, d3, d7
\n\t
"
"vaddw.s16 q12, q12, d4
\n\t
"
"vaddw.s16 q13, q13, d5
\n\t
"
// res row 4
"vmov.s8 q2, #0
\n\t
"
"vdup.s8 d6, d0[5]
\n\t
"
"vdup.s8 d7, d1[5]
\n\t
"
"vmlal.s8 q2, d2, d6
\n\t
"
"vmlal.s8 q2, d3, d7
\n\t
"
"vaddw.s16 q14, q14, d4
\n\t
"
"vaddw.s16 q15, q15, d5
\n\t
"
// res row 5
"subs %[kc1], %[kc1], #1
\n\t
"
"bge 0b
\n\t
"
"1:
\n\t
"
// odd, last row
"subs %[kc2], %[kc2], #1
\n\t
"
"blt 2f
\n\t
"
"vld1.s8 {d0}, [%[a_ptr]]
\n\t
"
"vld1.s8 {d1}, [%[b_ptr]]
\n\t
"
"vdup.s8 d2, d0[0]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q4, q4, d4
\n\t
"
"vaddw.s16 q5, q5, d5
\n\t
"
// res row 0
"vdup.s8 d2, d0[1]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q6, q6, d4
\n\t
"
"vaddw.s16 q7, q7, d5
\n\t
"
// res row 1
"vdup.s8 d2, d0[2]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q8, q8, d4
\n\t
"
"vaddw.s16 q9, q9, d5
\n\t
"
// res row 2
"vdup.s8 d2, d0[3]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q10, q10, d4
\n\t
"
"vaddw.s16 q11, q11, d5
\n\t
"
// res row 3
"vdup.s8 d2, d0[4]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q12, q12, d4
\n\t
"
"vaddw.s16 q13, q13, d5
\n\t
"
// res row 4
"vdup.s8 d2, d0[5]
\n\t
"
"vmull.s8 q2, d1, d2
\n\t
"
"vaddw.s16 q14, q14, d4
\n\t
"
"vaddw.s16 q15, q15, d5
\n\t
"
// res row 4
"2:
\n\t
"
"vst1.32 {q4, q5}, [%[c]], %[step]
\n\t
"
"vst1.32 {q6, q7}, [%[c]], %[step]
\n\t
"
"vst1.32 {q8, q9}, [%[c]], %[step]
\n\t
"
"vst1.32 {q10, q11}, [%[c]], %[step]
\n\t
"
"vst1.32 {q12, q13}, [%[c]], %[step]
\n\t
"
"vst1.32 {q14, q15}, [%[c]]
\n\t
"
:
:
[
a_ptr
]
"r"
(
a_ptr
),
[
b_ptr
]
"r"
(
b_ptr
),
[
c
]
"r"
(
c
),
[
kc1
]
"r"
(
kc1
),
[
kc2
]
"r"
(
kc2
),
[
step
]
"r"
(
step
)
:
"cc"
,
"memory"
,
"r0"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
#endif
}
// 8 bit int inner product
void
Gemm
::
InnerKernelWithBias
(
int32_t
mc
,
int32_t
nc
,
int8_t
alpha
,
const
int8_t
*
a
,
const
int8_t
*
b
,
int8_t
beta
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
)
{
#pragma omp parallel for
for
(
int32_t
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int32_t
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
AddDot6x8
(
KC
,
a
+
i
*
KC
,
b
+
j
*
KC
,
c
+
i
*
NC
+
j
,
NC
);
}
}
if
(
alpha
!=
1
)
{
WriteWithAlphaBeta
(
mc
,
nc
,
c
,
C
,
ldc
);
return
;
}
if
(
beta
==
0
)
{
WriteBasic
(
mc
,
nc
,
c
,
C
,
ldc
);
return
;
}
if
(
beta
==
1
&&
!
relu
)
{
if
(
bias
==
nullptr
)
{
WriteWithAdd
(
mc
,
nc
,
c
,
C
,
ldc
);
}
else
{
WriteWithAddV1
(
mc
,
nc
,
c
,
C
,
ldc
,
bias
);
}
return
;
}
if
(
beta
==
1
&&
relu
)
{
if
(
bias
==
nullptr
)
{
WriteWithAddRelu
(
mc
,
nc
,
c
,
C
,
ldc
);
}
else
{
WriteWithAddReluV1
(
mc
,
nc
,
c
,
C
,
ldc
,
bias
);
}
return
;
}
}
// 8 bit int PackMatrixA
void
Gemm
::
PackMatrixA_6r
(
int32_t
m
,
int32_t
k
,
int32_t
m_tail
,
const
int8_t
*
A
,
int32_t
lda
,
int8_t
*
buffer
)
{
const
int32_t
i_length
=
m
-
m_tail
;
for
(
int32_t
i
=
0
;
i
<
i_length
;
i
+=
MR
)
{
const
int8_t
*
a0
=
A
+
i
*
lda
;
const
int8_t
*
a1
=
A
+
(
i
+
1
)
*
lda
;
const
int8_t
*
a2
=
A
+
(
i
+
2
)
*
lda
;
const
int8_t
*
a3
=
A
+
(
i
+
3
)
*
lda
;
const
int8_t
*
a4
=
A
+
(
i
+
4
)
*
lda
;
const
int8_t
*
a5
=
A
+
(
i
+
5
)
*
lda
;
int8_t
*
local_buffer
=
buffer
+
i
*
k
;
for
(
int32_t
j
=
0
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
*
local_buffer
++
=
*
a1
++
;
*
local_buffer
++
=
*
a2
++
;
*
local_buffer
++
=
*
a3
++
;
*
local_buffer
++
=
*
a4
++
;
*
local_buffer
++
=
*
a5
++
;
}
}
if
(
m_tail
!=
0
)
{
const
int8_t
*
a0
=
&
A
(
i_length
,
0
);
const
int8_t
*
a1
=
a0
+
lda
;
const
int8_t
*
a2
=
a0
+
2
*
lda
;
const
int8_t
*
a3
=
a0
+
3
*
lda
;
const
int8_t
*
a4
=
a0
+
4
*
lda
;
const
int8_t
*
a5
=
a0
+
5
*
lda
;
int8_t
*
local_buffer
=
buffer
+
i_length
*
k
;
switch
(
m_tail
)
{
case
1
:
a1
=
zero_int8
;
case
2
:
a2
=
zero_int8
;
case
3
:
a3
=
zero_int8
;
case
4
:
a4
=
zero_int8
;
case
5
:
a5
=
zero_int8
;
break
;
default:
break
;
}
for
(
int32_t
j
=
0
;
j
<
k
;
++
j
)
{
*
local_buffer
++
=
*
a0
++
;
*
local_buffer
++
=
*
a1
++
;
*
local_buffer
++
=
*
a2
++
;
*
local_buffer
++
=
*
a3
++
;
*
local_buffer
++
=
*
a4
++
;
*
local_buffer
++
=
*
a5
++
;
}
}
}
// 8 bit int PackMatrixB
void
Gemm
::
PackMatrixB_8c
(
int32_t
k
,
int32_t
n
,
int32_t
n_tail
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
*
buffer
)
{
const
int32_t
j_length
=
n
-
n_tail
;
for
(
int32_t
j
=
0
;
j
<
j_length
;
j
+=
NR
)
{
int8_t
*
local_buffer
=
buffer
+
j
*
k
;
for
(
int32_t
i
=
0
;
i
<
k
;
++
i
)
{
const
int8_t
*
b0
=
&
B
(
i
,
j
);
#if __ARM_NEON
asm
volatile
(
// "pld [%[b0]] \n\t"
"vld1.s8 {d0}, [%[b0]]
\n\t
"
"vst1.s8 {d0}, [%[local_buffer]]!
\n\t
"
:
[
local_buffer
]
"+r"
(
local_buffer
)
:
[
b0
]
"r"
(
b0
)
:
"memory"
,
"q0"
);
#else
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
*
local_buffer
++
=
*
b0
++
;
#endif // __ARM_NEON
}
}
if
(
n_tail
!=
0
)
{
int8_t
*
local_buffer
=
buffer
+
j_length
*
k
;
for
(
int32_t
i
=
0
;
i
<
k
;
++
i
)
{
const
int8_t
*
b0
=
&
B
(
i
,
j_length
);
for
(
int32_t
j
=
j_length
;
j
<
n
;
++
j
)
{
*
local_buffer
++
=
*
b0
++
;
}
for
(
int32_t
j
=
n
;
j
<
j_length
+
NR
;
++
j
)
{
*
local_buffer
++
=
0
;
}
}
}
}
// 8 bit int matrix product (m*k x k*n)
void
Gemm
::
Sgemm
(
int32_t
m
,
int32_t
n
,
int32_t
k
,
int8_t
alpha
,
const
int8_t
*
A
,
int32_t
lda
,
const
int8_t
*
B
,
int32_t
ldb
,
int8_t
beta
,
int32_t
*
C
,
int32_t
ldc
,
bool
relu
,
int8_t
*
bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int32_t
L1
=
32
*
1024
;
int32_t
L2
=
512
*
1024
;
KC
=
k
;
MC
=
L1
/
(
KC
*
sizeof
(
int8_t
));
NC
=
L2
/
(
KC
*
sizeof
(
int8_t
));
// make sure MC is multiple of MR, and NC is multiple of NR
if
(
MC
==
0
)
{
MC
=
MR
;
}
else
{
int32_t
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
MR
-
1
)
/
MR
*
MR
;
}
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
if
(
NC
==
0
)
{
NC
=
NR
;
}
else
{
int32_t
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
}
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
MC
*
KC
));
packedB_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
*
NC
));
packedC_int8
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
MC
*
NC
));
zero_int8
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
KC
));
memset
(
static_cast
<
void
*>
(
zero_int8
),
0
,
sizeof
(
int8_t
)
*
KC
);
int32_t
mc
,
nc
;
for
(
int32_t
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB_int8
);
for
(
int32_t
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA_int8
);
if
(
bias
==
nullptr
)
{
InnerKernelWithBias
(
mc
,
nc
,
alpha
,
packedA_int8
,
packedB_int8
,
beta
,
packedC_int8
,
&
C
(
i
,
j
),
ldc
,
relu
,
nullptr
);
}
else
{
InnerKernelWithBias
(
mc
,
nc
,
alpha
,
packedA_int8
,
packedB_int8
,
beta
,
packedC_int8
,
&
C
(
i
,
j
),
ldc
,
relu
,
bias
+
i
);
}
}
}
paddle_mobile
::
memory
::
Free
(
packedA_int8
);
paddle_mobile
::
memory
::
Free
(
packedB_int8
);
paddle_mobile
::
memory
::
Free
(
packedC_int8
);
paddle_mobile
::
memory
::
Free
(
zero_int8
);
}
// 8 bit int write back
// C = alpha * A * B + beta * C
void
Gemm
::
WriteWithAlphaBeta
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
)
{}
// C = A * B, 8位 int32_t
void
Gemm
::
WriteBasic
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
)
{
int32_t
nc1
=
nc
>>
4
;
int32_t
_nc1
=
nc
&
15
;
int32_t
step
=
sizeof
(
int32_t
)
*
ldc
;
int32_t
step1
=
sizeof
(
int32_t
)
*
(
NC
-
(
nc1
<<
4
));
int32_t
volatile
m
=
mc
;
int32_t
*
volatile
c_ptr
,
*
volatile
C_ptr
;
int32_t
*
C0
,
*
c0
;
c_ptr
=
c
;
C_ptr
=
C
;
if
(
nc1
>
0
)
{
asm
volatile
(
"subs %[mc], %[mc], #1
\n\t
"
"blt end_mc_%=
\n\t
"
"loop_mc_%=:
\n\t
"
"mov r6, %[C_ptr]
\n\t
"
"mov r5, %[nc1]
\n\t
"
"subs r5, r5, #1
\n\t
"
"blt end_nc1_%=
\n\t
"
"loop_nc1_%=:
\n\t
"
"vld1.32 {q0, q1}, [%[c_ptr]]!
\n\t
"
"vst1.32 {q0, q1}, [r6]!
\n\t
"
"vld1.32 {q2, q3}, [%[c_ptr]]!
\n\t
"
"vst1.32 {q2, q3}, [r6]!
\n\t
"
"subs r5, r5, #1
\n\t
"
"bge loop_nc1_%=
\n\t
"
"end_nc1_%=:
\n\t
"
"add %[C_ptr], %[C_ptr], %[step]
\n\t
"
"add %[c_ptr], %[c_ptr], %[step1]
\n\t
"
"subs %[mc], %[mc], #1
\n\t
"
"bge loop_mc_%=
\n\t
"
"end_mc_%=:
\n\t
"
:
:
[
C_ptr
]
"r"
(
C_ptr
),
[
c_ptr
]
"r"
(
c_ptr
),
[
mc
]
"r"
(
m
),
[
nc1
]
"r"
(
nc1
),
[
step
]
"r"
(
step
),
[
step1
]
"r"
(
step1
)
:
"memory"
,
"r5"
,
"r6"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
);
}
if
(
_nc1
!=
0
)
{
for
(
int32_t
i
=
0
;
i
<
mc
;
i
++
)
{
C0
=
C_ptr
+
nc1
*
16
+
i
*
ldc
;
c0
=
c_ptr
+
nc1
*
16
+
i
*
NC
;
for
(
int32_t
j
=
0
;
j
<
_nc1
;
j
++
)
{
*
C0
++
=
*
c0
++
;
}
}
}
}
// C = A * B + C
void
Gemm
::
WriteWithAdd
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
)
{}
// C = A * B + bias
void
Gemm
::
WriteWithAddV1
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
int8_t
*
bias
)
{}
// C = A * B + C, relu(C)
void
Gemm
::
WriteWithAddRelu
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
)
{}
// C = A * B + bias, relu(C)
void
Gemm
::
WriteWithAddReluV1
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
,
int8_t
*
bias
)
{}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/math_function.h
浏览文件 @
1c893a02
...
...
@@ -25,7 +25,7 @@ template <typename T>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
=
false
,
float
*
bias
=
nullptr
);
T
*
bias
=
nullptr
);
template
<
typename
T
>
void
matmulWithBn
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
...
...
src/operators/math/math_function_int8.cpp
0 → 100644
浏览文件 @
1c893a02
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstring>
#include <string>
#include "operators/math/gemm.h"
#include "operators/math/math_function.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
template
<
>
void
matmul
<
int8_t
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
int8_t
alpha
,
framework
::
Tensor
*
matrix_out
,
int8_t
beta
,
bool
relu
,
int8_t
*
bias
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
PADDLE_MOBILE_ENFORCE
(
dim_a
.
size
()
==
2
&&
dim_b
.
size
()
==
2
&&
dim_out
.
size
()
==
2
,
"The input and output of matmul be matrix"
);
int32_t
M
=
dim_out
[
0
];
int32_t
N
=
dim_out
[
1
];
int32_t
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
Gemm
gemm
;
if
(
trans_a
)
{
int32_t
numel
=
matrix_a
.
numel
();
int32_t
m
=
matrix_a
.
dims
()[
0
];
int32_t
n
=
matrix_a
.
dims
()[
1
];
int8_t
*
tmp
=
(
int8_t
*
)(
matrix_a
.
data
<
int8_t
>
());
// NOLINT
int8_t
*
a
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
numel
));
int32_t
index
=
0
;
for
(
int32_t
j
=
0
;
j
<
n
;
j
++
)
{
for
(
int32_t
i
=
0
;
i
<
m
;
i
++
)
{
a
[
index
++
]
=
tmp
[
i
*
n
+
j
];
}
}
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
else
{
gemm
.
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
int8_t
>
(),
K
,
matrix_b
.
data
<
int8_t
>
(),
N
,
beta
,
matrix_out
->
data
<
int32_t
>
(),
N
,
relu
,
bias
);
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
test/common/test_gemm_int8_accuracy.cpp
浏览文件 @
1c893a02
...
...
@@ -57,14 +57,14 @@ int do_sgemm(int m, int n, int k, bool relu, int pr) {
int
ldc
=
n
;
default_random_engine
e
;
uniform_int_distribution
<
int8_t
>
pixel
(
-
127
,
127
);
int8_t
*
a
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
m
*
k
));
int8_t
*
b
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
k
*
n
));
int32_t
*
c
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
m
*
n
));
int32_t
*
c1
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
m
*
n
));
int8_t
*
a
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
m
*
k
));
int8_t
*
b
=
static_cast
<
int8_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int8_t
)
*
k
*
n
));
int32_t
*
c
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
m
*
n
));
int32_t
*
c1
=
static_cast
<
int32_t
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
int32_t
)
*
m
*
n
));
for
(
int
i
=
0
;
i
<
m
*
k
;
++
i
)
{
a
[
i
]
=
pixel
(
e
);
...
...
@@ -84,8 +84,8 @@ int do_sgemm(int m, int n, int k, bool relu, int pr) {
}
paddle_mobile
::
operators
::
math
::
Gemm
gemm
;
gemm
.
Sgemm
(
m
,
n
,
k
,
1
,
a
,
lda
,
b
,
ldb
,
0
,
c
,
ldc
,
relu
,
nullptr
);
gemm
.
Sgemm
(
m
,
n
,
k
,
static_cast
<
int8_t
>
(
1
),
a
,
lda
,
b
,
ldb
,
static_cast
<
int8_t
>
(
0
),
c
,
ldc
,
relu
,
nullptr
);
int
eq
=
0
;
int
neq
=
0
;
for
(
int
i
=
0
;
i
<
m
*
n
;
++
i
)
{
...
...
@@ -124,7 +124,8 @@ int main() {
do_sgemm
(
512
,
256
,
384
,
false
,
0
);
do_sgemm
(
1366
,
768
,
256
,
false
,
0
);
do_sgemm
(
1255
,
755
,
333
,
false
,
0
);
do_sgemm
(
555
,
777
,
999
,
false
,
0
);
do_sgemm
(
555
,
777
,
999
,
false
,
0
);
do_sgemm
(
1024
,
1024
,
1024
,
false
,
0
);
return
0
;
}
test/common/test_gemm_perf.cpp
浏览文件 @
1c893a02
...
...
@@ -28,13 +28,11 @@ limitations under the License. */
int
main
()
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
CPU
>
paddle_mobile
;
paddle_mobile
.
SetThreadNum
(
4
);
Tensor
aa
,
bb
,
cc
,
scale
,
bias
;
paddle_mobile
.
SetThreadNum
(
1
);
Tensor
aa
,
bb
,
cc
;
auto
aaptr
=
aa
.
mutable_data
<
float
>
({
m
,
k
});
auto
bbptr
=
bb
.
mutable_data
<
float
>
({
k
,
n
});
auto
ccptr
=
cc
.
mutable_data
<
float
>
({
m
,
n
});
auto
scaleptr
=
scale
.
mutable_data
<
float
>
({
m
});
auto
biasptr
=
bias
.
mutable_data
<
float
>
({
m
});
for
(
int
i
=
0
;
i
<
m
*
k
;
++
i
)
{
aaptr
[
i
]
=
2
;
...
...
@@ -45,23 +43,55 @@ int main() {
for
(
int
i
=
0
;
i
<
m
*
n
;
++
i
)
{
ccptr
[
i
]
=
2
;
}
for
(
int
i
=
0
;
i
<
m
;
++
i
)
{
scaleptr
[
i
]
=
1
;
biasptr
[
i
]
=
0
;
Tensor
aa_int8
,
bb_int8
,
cc_int8
;
auto
aaptr_int8
=
aa_int8
.
mutable_data
<
int8_t
>
({
m
,
k
});
auto
bbptr_int8
=
bb_int8
.
mutable_data
<
int8_t
>
({
k
,
n
});
auto
ccptr_int8
=
cc_int8
.
mutable_data
<
int32_t
>
({
m
,
n
});
for
(
int
i
=
0
;
i
<
m
*
k
;
++
i
)
{
aaptr_int8
[
i
]
=
static_cast
<
int8_t
>
(
2
);
}
for
(
int
i
=
0
;
i
<
k
*
n
;
++
i
)
{
bbptr_int8
[
i
]
=
static_cast
<
int8_t
>
(
2
);
}
for
(
int
i
=
0
;
i
<
m
*
n
;
++
i
)
{
ccptr_int8
[
i
]
=
static_cast
<
int32_t
>
(
2
);
}
auto
time1
=
time
();
// float
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
float
>
(
aa
,
false
,
bb
,
false
,
static_cast
<
float
>
(
1
),
&
cc
,
static_cast
<
float
>
(
0
),
false
,
biasptr
);
false
,
nullptr
);
}
// paddle_mobile::operators::math::matmulWithBn<float>(
// aa, false, bb, false, static_cast<float>(1), &cc,
// static_cast<float>(0), true, &scale, &bias, 0);
auto
time1
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
float
>
(
aa
,
false
,
bb
,
false
,
static_cast
<
float
>
(
1
),
&
cc
,
static_cast
<
float
>
(
0
),
false
,
nullptr
);
}
auto
time2
=
time
();
std
::
cout
<<
"gemm cost :"
<<
time_diff
(
time1
,
time2
)
/
10
<<
"ms
\n
"
;
std
::
cout
<<
"float gemm cost :"
<<
time_diff
(
time1
,
time2
)
/
10
<<
"ms
\n
"
;
// int8_t
// warm-up 10 times
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
int8_t
>
(
1
),
&
cc_int8
,
static_cast
<
int8_t
>
(
0
),
false
,
nullptr
);
}
auto
time3
=
time
();
for
(
int
j
=
0
;
j
<
10
;
++
j
)
{
paddle_mobile
::
operators
::
math
::
matmul
<
int8_t
>
(
aa_int8
,
false
,
bb_int8
,
false
,
static_cast
<
int8_t
>
(
1
),
&
cc_int8
,
static_cast
<
int8_t
>
(
0
),
false
,
nullptr
);
}
auto
time4
=
time
();
std
::
cout
<<
"int8_t gemm cost :"
<<
time_diff
(
time3
,
time4
)
/
10
<<
"ms
\n
"
;
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录