conv_arm_func.h 7.4 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#pragma once
18
#include <vector>
19
#include "operators/math/conv_func.h"
H
hjchen2 已提交
20
#include "operators/math/depthwise_conv3x3.h"
21 22
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
23
#include "operators/math/pad.h"
24
#include "operators/math/vol2col.h"
H
hjchen2 已提交
25
#include "operators/math/winograd/winograd_transform.h"
L
liuruilong 已提交
26 27 28 29
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {
30

31
template <typename Itype, typename Otype>
H
hjchen2 已提交
32
inline void GemmConv(const ConvParam<CPU> &param) {
L
liuruilong 已提交
33 34 35
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
36
  output->mutable_data<Otype>();
L
liuruilong 已提交
37
  int groups = param.Groups();
38 39 40
  const std::vector<int> strides = param.Strides();
  const std::vector<int> paddings = param.Paddings();
  const std::vector<int> dilations = param.Dilations();
L
liuruilong 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
L
liuruilong 已提交
54
      framework::flatten_to_2d(col_shape, data_dim + 1);
L
liuruilong 已提交
55

56 57
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liuruilong 已提交
58 59 60
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
61
    col.mutable_data<Itype>(col_shape);
L
liuruilong 已提交
62 63 64 65 66
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
L
liuruilong 已提交
67
      input->dims(), 1, static_cast<int>(input->dims().size()));
L
liuruilong 已提交
68 69 70 71 72

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
L
liuruilong 已提交
73 74
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
L
liuruilong 已提交
75 76 77 78 79

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

80 81
  math::Vol2ColFunctor<CPU, Itype> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Itype> im2col;
L
liuruilong 已提交
82

H
hjchen2 已提交
83
  const int batch_size = static_cast<int>(input->dims()[0]);
L
liuruilong 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
L
liuruilong 已提交
105

L
liuruilong 已提交
106 107 108
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
109

110
      math::matmul<Itype>(filter_slice, false, col_matrix, false,
L
liuruilong 已提交
111
                          static_cast<float>(1), &out_slice,
Z
zhaojiaying01 已提交
112
                          static_cast<float>(0));
L
liuruilong 已提交
113 114 115 116
    }
  }
}

H
hjchen2 已提交
117 118
template <int tile, int kernel>
inline void WinogradConv3x3(const ConvParam<CPU> &param) {
119
  const Tensor *input = param.Input();
H
hjchen2 已提交
120
  const Tensor *filter = param.Filter();
121 122 123 124 125 126
  Tensor *output = param.Output();
  output->mutable_data<float>();
  int batch_size = input->dims()[0];
  int groups = param.Groups();
  const std::vector<int> &paddings = param.Paddings();

H
hjchen2 已提交
127 128
  auto winograd_pad = [&](int width, int pad) {
    int output_tile = tile - kernel + 1;
129 130
    // int tiles = (width + pad - kernel) / output_tile + 1;
    // return (tiles - 1) * output_tile + tile - width;
H
hjchen2 已提交
131 132 133 134
    int pad_width = (width + 2 * pad - kernel) / output_tile * output_tile;
    return pad_width + tile - width;
  };

H
hjchen2 已提交
135
  math::PadFunctor<CPU, float> pad;
136
  Tensor input_pad;
H
hjchen2 已提交
137
  framework::Tensor transformed_input;
138 139 140
  for (int i = 0; i < batch_size; ++i) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
141 142 143 144
    // int pad_bottom = winograd_pad(in_batch.dims()[2], paddings[0]);
    // int pad_right = winograd_pad(in_batch.dims()[3], paddings[1]);
    int pad_bottom = paddings[0];
    int pad_right = paddings[1];
H
hjchen2 已提交
145
    if (paddings[0] || paddings[1] || pad_bottom || pad_right) {
146
      framework::DDim pad_shape = in_batch.dims();
H
hjchen2 已提交
147 148
      pad_shape[2] += paddings[0] + pad_bottom;
      pad_shape[3] += paddings[1] + pad_right;
149
      input_pad.mutable_data<float>(pad_shape);
H
hjchen2 已提交
150
      pad(in_batch, paddings[0], pad_bottom, paddings[1], pad_right,
151
          &input_pad);
152
    } else {
H
hjchen2 已提交
153
      input_pad = in_batch;
154
    }
H
hjchen2 已提交
155 156 157 158 159
    // tile input and transform
    math::winograd_transform_input<tile, kernel>(input_pad, &transformed_input);
    // caculate output
    math::winograd_transform_output<tile, kernel>(transformed_input, *filter,
                                                  output);
H
hjchen2 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  }
}

template <typename Itype, typename Otype>
inline void DepthwiseConv3x3(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = static_cast<int>(input->dims()[0]);
  Tensor input_pad;
  math::PadFunctor<CPU, Itype> pad;
  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
178 179 180 181 182 183 184 185 186 187
    if (paddings[0] || paddings[1]) {
      framework::DDim pad_shape = in_batch.dims();
      pad_shape[2] += 2 * paddings[0];
      pad_shape[3] += 2 * paddings[1];
      input_pad.mutable_data<float>(pad_shape);
      pad(in_batch, paddings[0], paddings[0], paddings[1], paddings[1],
          &input_pad);
    } else {
      input_pad = in_batch;
    }
H
hjchen2 已提交
188
    if (strides[0] == 1) {
189
      math::DepthwiseConv3x3s1<Itype, Otype>(input_pad, *filter, &out_batch);
H
hjchen2 已提交
190
    } else if (strides[0] == 2) {
191
      math::DepthwiseConv3x3s2<Itype, Otype>(input_pad, *filter, &out_batch);
H
hjchen2 已提交
192
    } else {
193 194 195 196
      // math::DepthwiseConv3x3<Itype, Otype>(input_pad, *filter,
      // &out_batch);
      PADDLE_MOBILE_THROW_EXCEPTION(
          "Depthwise conv with generic strides has not been implemented.");
H
hjchen2 已提交
197
    }
E
eclipsess 已提交
198 199 200
  }
}

L
liuruilong 已提交
201 202
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
203 204

#endif