gemm.h 19.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaojiaying01 已提交
14 15

#pragma once
H
hjchen2 已提交
16
#include <cstring>
17 18
#include <string>
#include "common/log.h"
19
#include "memory/t_malloc.h"
Z
ZhenWang 已提交
20 21 22
#ifdef _OPENMP
#include <omp.h>
#endif
Z
zhaojiaying01 已提交
23

Z
zhaojiaying01 已提交
24 25 26 27
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
#define B(i, j) B[(i)*ldb + (j)]
#define C(i, j) C[(i)*ldc + (j)]
Z
zhaojiaying01 已提交
28

Z
zhaojiaying01 已提交
29
#if __aarch64__
Z
Zhen Wang 已提交
30
#define MR_INT8 4
31
#define NR_INT8 2
Z
zhaojiaying01 已提交
32 33 34
#define MR 6
#define NR 16
#else
35
#define MR_INT8 4
36
#define NR_INT8 2
Z
zhaojiaying01 已提交
37
#define MR 6
38
#define NR 8
Z
zhaojiaying01 已提交
39
#endif
Z
zhaojiaying01 已提交
40

W
wangliu 已提交
41
#define s_min(i, j) ((i) < (j) ? (i) : (j))
Z
zhaojiaying01 已提交
42 43 44 45 46

namespace paddle_mobile {
namespace operators {
namespace math {

47 48 49 50 51 52 53 54 55
class Gemm {
 public:
  typedef void (Gemm::*FnPack)(int, int, int, const float *, int, float *);
  typedef void (Gemm::*FnAddDot)(int, const float *, const float *, float *,
                                 int);
  FnPack procPackA;
  FnPack procPackB;
  FnAddDot procAddDot;

56
  // 将 A\B 矩阵分块复制到连续内存(RowMajor)
57 58 59 60 61 62
  void PackMatrixA_4r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
  void PackMatrixA_6r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
  void PackMatrixA_omp_6r(int m, int k, int m_tail, const float *A, int lda,
                          float *buffer);
63 64
  void PackMatrixA_8r(int m, int k, int m_tail, const float *A, int lda,
                      float *buffer);
65 66 67 68 69 70
  void PackMatrixA_omp_8r(int m, int k, int m_tail, const float *A, int lda,
                          float *buffer);
  void PackMatrixB_8c(int k, int n, int n_tail, const float *B, int ldb,
                      float *buffer);
  void PackMatrixB_omp_8c(int k, int n, int n_tail, const float *B, int ldb,
                          float *buffer);
71 72 73
#if __aarch64__
  void PackMatrixB_12c(int k, int n, int n_tail, const float *B, int ldb,
                       float *buffer);
74 75
  void PackMatrixB_omp_12c(int k, int n, int n_tail, const float *B, int ldb,
                           float *buffer);
76 77
  void PackMatrixB_16c(int k, int n, int n_tail, const float *B, int ldb,
                       float *buffer);
78 79
  void PackMatrixB_omp_16c(int k, int n, int n_tail, const float *B, int ldb,
                           float *buffer);
80
#endif
81 82 83 84 85 86 87 88 89

  // 分块矩阵乘法
  void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
                   float beta, float *c, float *C, int ldc, bool relu);
  void InnerKernelWithBias(int mc, int nc, float alpha, const float *a,
                           const float *b, float beta, float *c, float *C,
                           int ldc, bool relu, float *bias);

  void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
90
                         const float *b, float beta, float *c, float *C,
91 92 93 94 95 96 97 98
                         int ldc, bool relu, float *new_scale, float *new_bias);
  void InnerKernelWithBnAdd(int mc, int nc, float alpha, const float *a,
                            const float *b, float beta, float *c, float *C,
                            int ldc, bool relu, float *new_scale,
                            float *new_bias, float *bias);
  void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b,
                            float *c, float *C, int ldc, float *p,
                            std::string mode, float *bias, float *bias1);
Z
Zhen Wang 已提交
99

100
  // 计算一个更小的 C 矩阵分块
101
#if __aarch64__
102 103 104
  void AddDot6x8(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot8x12(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot6x16(int k, const float *a, const float *b, float *c, int ldc);
105 106 107 108 109
#else
  void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc);
  void AddDot6x8(int k, const float *a, const float *b, float *c, int ldc);
#endif
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

  // 分块矩阵乘法结果回写
  // C = A * B
  void WriteBasic(int mc, int nc, float *c, float *C, int ldc);
  // C = alpha * A * B + beta * C
  void WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + C
  void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + bias
  void WriteWithAddV1(int mc, int nc, float *c, float *C, int ldc, float *bias);
  // C = A * B + C, relu(C)
  void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc);
  // C = A * B + C,prelu(C)
  void WriteWithAddPRelu(int mc, int nc, float *c, float *C, int ldc, float *p,
                         std::string mode, float *bias, float *bias1);
  // C = A * B + bias ,relu(C)
  void WriteWithAddReluV1(int mc, int nc, float *c, float *C, int ldc,
127
                          float *bias);
128 129 130 131 132 133 134 135
  // C = A * B, batchnorm(C)
  void WriteWithBn(int mc, int nc, float *c, float *C, int ldc,
                   float *new_scale, float *new_bias);
  // C = A * B, batchnorm(C), relu(C)
  void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
                       float *new_scale, float *new_bias);
  void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
                          float *new_scale, float *new_bias, float *bias1);
Z
Zhen Wang 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148
  // 向量矩阵乘法 (M = 1)
#if __aarch64__
#else
  void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
                    const float *B, int ldb, float beta, float *C, int ldc,
                    bool relu);

  void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
                          int lda, const float *B, int ldb, float beta,
                          float *C, int ldc, bool relu, float *new_scale,
                          float *new_bias);

149 150 151 152 153 154 155 156 157
  // 向量矩阵乘法结果回写
  // C = A * B
  void VecWriteBasic(int n, float *c, float *C, int ldc);
  // C = alpha * A * B + beta * C
  void VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc);
  // C = A * B + C
  void VecWriteWithAdd(int n, float *c, float *C, int ldc);
  // C = A * B + C, relu(C)
  void VecWriteWithAddRelu(int n, float *c, float *C, int ldc);
158 159 160 161 162 163 164
  // C = A * B, batchnorm(C)
  void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
                      float *new_bias);
  // C = A * B, batchnorm(C), relu(C)
  void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
                          float *new_bias);
#endif
165

Z
ZhenWang 已提交
166 167 168 169 170
  // 32位 float 矩阵乘法
  void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
             const float *B, int ldb, float beta, float *C, int ldc, bool relu,
             float *bias);

171 172 173 174
  // 32位 float 矩阵乘法, 并对结果进行 batchnrom
  void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
                   const float *B, int ldb, float beta, float *C, int ldc,
                   bool relu, float *new_scale, float *new_bias, float *bias);
Z
ZhenWang 已提交
175

176 177 178 179
  void SgemmWithPRelu(int m, int n, int k, const float *A, int lda,
                      const float *B, int ldb, float *C, int ldc, float *p,
                      std::string mode, float *bias, float *bias1);

Z
ZhenWang 已提交
180 181 182 183 184
  // 32位 float 矩阵乘法(openmp 多线程版本)
  void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
                 const float *B, int ldb, float beta, float *C, int ldc,
                 bool relu, float *bias);

185 186 187 188 189 190 191 192 193
  // 32位 float 矩阵乘法, 并对结果进行 batchnrom(openmp 多线程版本)
  void SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A,
                       int lda, const float *B, int ldb, float beta, float *C,
                       int ldc, bool relu, float *new_scale, float *new_bias,
                       float *bias);

  void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda,
                          const float *B, int ldb, float *C, int ldc, float *p,
                          std::string mode, float *bias, float *bias1);
Z
zhaojiaying01 已提交
194

Z
Zhen Wang 已提交
195 196
  // 8 bits function cluster begins
  // 8 bits int small block inner product
197 198
  void AddDot4x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);
199 200
  void AddDot4x2(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);
Z
Zhen Wang 已提交
201 202 203
  void AddDot6x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
                 int32_t ldc);

Z
Zhen Wang 已提交
204
  // 8 bits int inner product
205
  template <typename Otype>
206
  void InnerKernel(int32_t mc, int32_t nc, float alpha, const int8_t *a,
207
                   const int8_t *b, float beta, int32_t *c, Otype *C,
208
                   int32_t ldc, bool relu);
209
  template <typename Otype>
210
  void InnerKernelWithBias(int32_t mc, int32_t nc, float alpha, const int8_t *a,
211
                           const int8_t *b, float beta, int32_t *c, Otype *C,
Z
ZhenWang 已提交
212 213
                           int32_t ldc, bool relu, int32_t *bias,
                           bool addOnRow = false);
Z
Zhen Wang 已提交
214

Z
Zhen Wang 已提交
215
  // 8 bits int pack function
216 217
  void PackMatrixA_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                      int32_t lda, int8_t *buffer);
218 219
  void PackMatrixA_4r_16(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                         int32_t lda, int8_t *buffer);
Z
Zhen Wang 已提交
220 221
  void PackMatrixA_6r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                      int32_t lda, int8_t *buffer);
222 223
  void PackMatrixB_2c_16(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                         int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
224 225
  void PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                      int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
226 227 228 229
  void PackMatrixA_omp_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
                          int32_t lda, int8_t *buffer);
  void PackMatrixB_omp_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
                          int32_t ldb, int8_t *buffer);
230 231 232 233
  void PackMatrixA_omp_4r_16(int32_t m, int32_t k, int32_t m_tail,
                             const int8_t *A, int32_t lda, int8_t *buffer);
  void PackMatrixB_omp_2c_16(int32_t k, int32_t n, int32_t n_tail,
                             const int8_t *B, int32_t ldb, int8_t *buffer);
Z
Zhen Wang 已提交
234

Z
Zhen Wang 已提交
235
  // 8 bits int matrix product
236
  template <typename Itype, typename Btype, typename Otype>
Z
ZhenWang 已提交
237 238
  void Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha, const Itype *A,
                 int32_t lda, const Itype *B, int32_t ldb, float beta, Otype *C,
Z
ZhenWang 已提交
239
                 int32_t ldc, bool relu, Btype *bias, bool addOnRow = false);
Z
ZhenWang 已提交
240 241 242
  template <typename Otype>
  void Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
                 int32_t lda, const int8_t *B, int32_t ldb, float beta,
Z
ZhenWang 已提交
243 244
                 Otype *C, int32_t ldc, bool relu, int32_t *bias,
                 bool addOnRow = false);
Z
ZhenWang 已提交
245
  template <typename Itype, typename Btype, typename Otype>
246 247
  void Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const Itype *A,
             int32_t lda, const Itype *B, int32_t ldb, float beta, Otype *C,
Z
ZhenWang 已提交
248
             int32_t ldc, bool relu, Btype *bias, bool addOnRow = false);
249
  template <typename Otype>
250
  void Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
251
             int32_t lda, const int8_t *B, int32_t ldb, float beta, Otype *C,
Z
ZhenWang 已提交
252
             int32_t ldc, bool relu, int32_t *bias, bool addOnRow = false);
Z
Zhen Wang 已提交
253
  // 8 bits int write back
Z
Zhen Wang 已提交
254 255
  // C = A * B
  void WriteBasic(int32_t mc, int32_t nc, int32_t *c, int32_t *C, int32_t ldc);
256 257 258
  // C = A * B + bias, scale * relu(C)
  void WriteWithAddReluScale(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
                             int32_t ldc, int32_t *bias, float scale);
Z
ZhenWang 已提交
259
  // C = A * B + bias, scale * C, bias is added on column
260 261
  void WriteWithAddScale(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
                         int32_t ldc, int32_t *bias, float scale);
Z
ZhenWang 已提交
262 263 264
  // C = A * B + bias, scale * C, bias is added on row
  void WriteWithAddScaleT(int32_t mc, int32_t nc, int32_t *c, int8_t *C,
                          int32_t ldc, int32_t *bias, float scale);
Z
Zhen Wang 已提交
265

266 267 268 269
 private:
  int MC = 0;
  int KC = 0;
  int NC = 0;
Z
zhaojiaying01 已提交
270

Z
Zhen Wang 已提交
271
  // 32位 float
272 273 274 275
  float *packedA;
  float *packedB;
  float *packedC;
  float *zero;
Z
Zhen Wang 已提交
276

Z
Zhen Wang 已提交
277
  // 8 bits int
Z
Zhen Wang 已提交
278 279
  int8_t *packedA_int8;
  int8_t *packedB_int8;
280
  int32_t *packedC_int32;
Z
Zhen Wang 已提交
281
  int8_t *zero_int8;
282
};
283

284 285 286 287
// 8 bits int matrix product (m*k x k*n)
template <typename Otype>
void Gemm::Sgemm(int32_t m, int32_t n, int32_t k, float alpha, const int8_t *A,
                 int32_t lda, const int8_t *B, int32_t ldb, float beta,
Z
ZhenWang 已提交
288 289
                 Otype *C, int32_t ldc, bool relu, int32_t *bias,
                 bool addOnRow) {
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  // L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
  // L2 cache is 0.5~4 Mib (Contex-A72 cluster)
  int32_t L1 = 32 * 1024;
  int32_t L2 = 512 * 1024;

  const int32_t k_complete = (k + 15) - ((k + 15) & 15);
  KC = k_complete;
  MC = L1 / (KC * sizeof(int8_t));
  NC = L2 / (KC * sizeof(int8_t));

  // make sure MC is multiple of MR_INT8, and NC is multiple of NR_INT8
  if (MC == 0) {
    MC = MR_INT8;
  } else {
    int32_t mblock_num = (m + MC - 1) / MC;
    MC = (m + mblock_num - 1) / mblock_num;
    MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
  }
  // DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
  if (NC == 0) {
    NC = NR_INT8;
  } else {
    int32_t nblock_num = (n + NC - 1) / NC;
    NC = (n + nblock_num - 1) / nblock_num;
    NC = (NC + NR_INT8 - 1) / NR_INT8 * NR_INT8;
  }
  //  DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
  packedA_int8 = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
  packedB_int8 = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
  packedC_int32 = static_cast<int32_t *>(
      paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC));
  zero_int8 =
      static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * k));

  memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * k);
  int32_t mc, nc;
  for (int32_t j = 0; j < n; j += NC) {
    nc = s_min(n - j, NC);
    PackMatrixB_2c_16(k, nc, nc % NR_INT8, &B(0, j), ldb, packedB_int8);
    for (int32_t i = 0; i < m; i += MC) {
      mc = s_min(m - i, MC);
      PackMatrixA_4r_16(mc, k, mc % MR_INT8, &A(i, 0), lda, packedA_int8);
      if (bias == nullptr) {
        InnerKernel(mc, nc, alpha, packedA_int8, packedB_int8, beta,
                    packedC_int32, &C(i, j), ldc, relu);
      } else {
Z
ZhenWang 已提交
338 339 340 341 342 343 344 345 346
        if (addOnRow) {
          InnerKernelWithBias(mc, nc, alpha, packedA_int8, packedB_int8, beta,
                              packedC_int32, &C(i, j), ldc, relu, bias + j,
                              addOnRow);
        } else {
          InnerKernelWithBias(mc, nc, alpha, packedA_int8, packedB_int8, beta,
                              packedC_int32, &C(i, j), ldc, relu, bias + i,
                              addOnRow);
        }
347 348 349 350 351 352 353 354 355 356
      }
    }
  }

  paddle_mobile::memory::Free(packedA_int8);
  paddle_mobile::memory::Free(packedB_int8);
  paddle_mobile::memory::Free(packedC_int32);
  paddle_mobile::memory::Free(zero_int8);
}

Z
ZhenWang 已提交
357 358 359 360 361
// 8 bits int matrix product (m*k x k*n), omp version
template <typename Otype>
void Gemm::Sgemm_omp(int32_t m, int32_t n, int32_t k, float alpha,
                     const int8_t *A, int32_t lda, const int8_t *B, int32_t ldb,
                     float beta, Otype *C, int32_t ldc, bool relu,
Z
ZhenWang 已提交
362
                     int32_t *bias, bool addOnRow) {
Z
ZhenWang 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
#ifdef _OPENMP
  int32_t max_threads = omp_get_max_threads();
#else
  int32_t max_threads = 1;
#endif

  int32_t L1 = 64 / max_threads * 1024;
  const int32_t k_complete = (k + 15) - ((k + 15) & 15);
  KC = k_complete;
  zero_int8 =
      static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * k));
  memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * k);
  if (m > n) {
    // 对 A 分块
    MC = L1 / (KC * sizeof(int8_t));
    if (MC == 0) {
      MC = MR_INT8;
    } else {
      int32_t mblock_num = (m + MC - 1) / MC;
      MC = (m + mblock_num - 1) / mblock_num;
      MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
    }
    // 补齐 B
    NC = (n + NR_INT8 - 1) / NR_INT8 * NR_INT8;

    packedB_int8 = static_cast<int8_t *>(
        paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
#if __aarch64__
391
    // TODO(paddle mobile)
Z
ZhenWang 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
#else
    PackMatrixB_omp_2c_16(k, n, n % NR_INT8, B, ldb, packedB_int8);
#endif
    packedA_int8 = static_cast<int8_t *>(
        paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC * max_threads));
  } else {
    // 对 B 分块
    NC = L1 / (KC * sizeof(int8_t));
    if (NC == 0) {
      NC = NR_INT8;
    } else {
      int32_t nblock_num = (n + NC - 1) / NC;
      NC = (n + nblock_num - 1) / nblock_num;
      NC = (NC + NR_INT8 - 1) / NR_INT8 * NR_INT8;
    }
    // 补齐 A
    MC = (m + MR_INT8 - 1) / MR_INT8 * MR_INT8;

    packedA_int8 = static_cast<int8_t *>(
        paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
#if __aarch64__
413
    // TODO(paddle mobile)
Z
ZhenWang 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
#else
    PackMatrixA_omp_4r_16(m, k, m % MR_INT8, A, lda, packedA_int8);
#endif
    packedB_int8 = static_cast<int8_t *>(
        paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC * max_threads));
  }
  packedC_int32 = static_cast<int32_t *>(
      paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC * max_threads));

  if (m > n) {
#pragma omp parallel for
    for (int32_t i = 0; i < m; i += MC) {
#ifdef _OPENMP
      int32_t local_threads = omp_get_thread_num();
#else
      int32_t local_threads = 0;
#endif

      int32_t mc;
      mc = s_min(m - i, MC);
      int8_t *local_A = packedA_int8 + MC * KC * local_threads;
      int32_t *local_C = packedC_int32 + MC * NC * local_threads;
#if __aarch64__
437
      // TODO(paddle mobile)
Z
ZhenWang 已提交
438 439 440 441 442 443 444
#else
      PackMatrixA_4r_16(mc, k, mc % MR_INT8, &A(i, 0), lda, local_A);
#endif
      if (bias == nullptr) {
        InnerKernel(mc, n, alpha, local_A, packedB_int8, beta, local_C,
                    &C(i, 0), ldc, relu);
      } else {
Z
ZhenWang 已提交
445 446 447 448 449 450 451
        if (addOnRow) {
          InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta,
                              local_C, &C(i, 0), ldc, relu, bias, addOnRow);
        } else {
          InnerKernelWithBias(mc, n, alpha, local_A, packedB_int8, beta,
                              local_C, &C(i, 0), ldc, relu, bias + i, addOnRow);
        }
Z
ZhenWang 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
      }
    }
  } else {
#pragma omp parallel for
    for (int32_t j = 0; j < n; j += NC) {
#ifdef _OPENMP
      int32_t local_threads = omp_get_thread_num();
#else
      int32_t local_threads = 0;
#endif
      int32_t nc;
      nc = s_min(n - j, NC);
      int8_t *local_B = packedB_int8 + KC * NC * local_threads;
      int32_t *local_C = packedC_int32 + MC * NC * local_threads;
#if __aarch64__
467
      // TODO(paddle mobile)
Z
ZhenWang 已提交
468 469 470 471 472 473 474
#else
      PackMatrixB_2c_16(k, nc, nc % NR_INT8, &B(0, j), ldb, local_B);
#endif
      if (bias == nullptr) {
        InnerKernel(m, nc, alpha, packedA_int8, local_B, beta, local_C,
                    &C(0, j), ldc, relu);
      } else {
Z
ZhenWang 已提交
475 476 477 478 479 480 481
        if (addOnRow) {
          InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta,
                              local_C, &C(0, j), ldc, relu, bias + j, addOnRow);
        } else {
          InnerKernelWithBias(m, nc, alpha, packedA_int8, local_B, beta,
                              local_C, &C(0, j), ldc, relu, bias, addOnRow);
        }
Z
ZhenWang 已提交
482 483 484 485 486 487 488 489 490 491
      }
    }
  }

  paddle_mobile::memory::Free(packedA_int8);
  paddle_mobile::memory::Free(packedB_int8);
  paddle_mobile::memory::Free(packedC_int32);
  paddle_mobile::memory::Free(zero_int8);
}

Z
zhaojiaying01 已提交
492 493 494
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile