conv_add_kernel.cpp 6.8 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"
Z
zhaojiaying01 已提交
18
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
L
liuruilong 已提交
19 20 21 22 23 24

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
L
liuruilong 已提交
25
  PADDLE_MOBILE_ENFORCE(
L
liuruilong 已提交
26
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
L
liuruilong 已提交
27
          param->Paddings()[0] == param->Paddings()[1],
L
liuruilong 已提交
28
      "need equal");
29 30 31 32
  if (!param->Bias()->isInit()) {
    param->Bias()->InitCLImage(cl_helper_.CLContext(),
                               this->cl_helper_.CLCommandQueue());
  }
L
liuruilong 已提交
33

L
liuruilong 已提交
34 35 36 37
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

38 39
  const std::string conv_kernel_file = "conv_kernel.cl";
  const std::string wino_kernel_file = "winograd_transform.cl";
40 41 42 43 44 45
  std::string build_options;
  if (param->Output()->dims() == param->Bias()->dims()) {
    build_options = "-DBIASE_ELE";
  } else {
    build_options = "-DBIASE_CH";
  }
46

L
liuruilong 已提交
47
  if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
48
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW1x1_FLOAT;
L
liuruilong 已提交
49 50
    param->Filter()->InitNImage(cl_helper_.CLContext(),
                                cl_helper_.CLCommandQueue());
51 52 53 54 55 56 57
    if (param->Input()->dims()[1] % 4 == 0) {
      this->cl_helper_.AddKernel("conv_1x1_simple", conv_kernel_file,
                                 build_options);
    } else {
      this->cl_helper_.AddKernel("conv_1x1_wrapped", conv_kernel_file,
                                 build_options);
    }
58

Y
yangfei 已提交
59 60 61 62
  } else if (param->Filter()->dims()[1] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
    param->Filter()->InitDWImage(cl_helper_.CLContext(),
L
liuruilong 已提交
63
                                 cl_helper_.CLCommandQueue());
Z
zhaojiaying01 已提交
64 65 66 67 68 69 70 71 72
    if (param->Strides()[0] == 1 && param->Dilations()[0] == 1) {
      param->ExecMode() = ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3S1_FLOAT;
      this->cl_helper_.AddKernel("depth_conv_3x3s1", conv_kernel_file,
                                 build_options);
    } else {
      param->ExecMode() = ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3_FLOAT;
      this->cl_helper_.AddKernel("depth_conv_3x3", conv_kernel_file,
                                 build_options);
    }
L
liuruilong 已提交
73

74 75 76 77 78 79 80 81
  } else if (param->Filter()->dims()[1] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] != 3) {
    param->Filter()->InitDWImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_DEPTHWISEBASIC_FLOAT;
    this->cl_helper_.AddKernel("depth_conv", conv_kernel_file, build_options);

L
liuruilong 已提交
82 83
  } else if (param->Filter()->dims()[2] == 3 &&
             param->Filter()->dims()[3] == 3) {
84 85 86 87 88 89 90 91 92 93 94 95 96 97
    //    if (param->Strides()[0] == param->Strides()[1] &&
    //        param->Strides()[0] == 1 && param->Input()->dims()[2] >= 32) {
    //      param->ExecMode() = ConvParam<GPU_CL>::EXEC_WINOGRAD3X3_FLOAT;
    //      this->cl_helper_.AddKernel("winograd_filter_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //      this->cl_helper_.AddKernel("winograd_input_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //      this->cl_helper_.AddKernel("matmul", "matmul.cl");
    //      this->cl_helper_.AddKernel("winograd_output_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //
    //      winograd_transform_weight<4, 3>(&this->cl_helper_, param->Filter());
    //
    //    } else {
98 99 100

    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
X
xiebaiyuan 已提交
101 102 103 104 105 106 107 108 109 110

    if (param->groups > 1) {
      param->ExecMode() =
          ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_WITH_GROUP_FLOAT;
      this->cl_helper_.AddKernel("conv_3x3", conv_kernel_file, build_options);
    } else {
      param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_FLOAT;
      this->cl_helper_.AddKernel("conv_3x3spl", conv_kernel_file,
                                 build_options);
    }
111
    //    }
L
liuruilong 已提交
112

Y
yangfei 已提交
113 114
  } else if (param->Filter()->dims()[2] == 7 &&
             param->Filter()->dims()[3] == 7) {
115
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW7x7_FLOAT;
Y
yangfei 已提交
116 117
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
118

119
    this->cl_helper_.AddKernel("conv_7x7spl", conv_kernel_file, build_options);
120

Y
yangfei 已提交
121 122
  } else if (param->Filter()->dims()[2] == 5 &&
             param->Filter()->dims()[3] == 5) {
123
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW5x5_FLOAT;
Y
yangfei 已提交
124 125
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
126 127

    this->cl_helper_.AddKernel("conv_5x5", conv_kernel_file, build_options);
L
liuruilong 已提交
128 129
  }

L
liuruilong 已提交
130 131 132 133 134
  return true;
}

template <>
void ConvAddKernel<GPU_CL, float>::Compute(
L
liuruilong 已提交
135
    const FusionConvAddParam<GPU_CL> &param) {
136 137 138 139 140
  switch (param.ExecMode()) {
    case ConvParam<GPU_CL>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<4, 3>(&this->cl_helper_, param, false, param.Bias());
      break;
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW1x1_FLOAT:
X
xiebaiyuan 已提交
141
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_WITH_GROUP_FLOAT:
142 143
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW5x5_FLOAT:
    case ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3_FLOAT:
144
    case ConvParam<GPU_CL>::EXEC_DEPTHWISEBASIC_FLOAT:
145 146
      ConvAddBnRelu(&this->cl_helper_, param, false, param.Bias());
      break;
147
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW7x7_FLOAT:
148
      SWConvAddBnRelu(&this->cl_helper_, param, false, param.Bias());
149
      break;
Z
zhaojiaying01 已提交
150 151 152
    case ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3S1_FLOAT:
      DWConvAddBnRelu(&this->cl_helper_, param, false, param.Bias());
      break;
153
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_FLOAT:
154 155
      SWConvAddBnRelu(&this->cl_helper_, param, false, param.Bias());
      break;
156 157 158 159
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
L
liuruilong 已提交
160
}
L
liuruilong 已提交
161 162 163 164 165 166 167

template class ConvAddKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif