提交 c5c2d2d2 编写于 作者: Y yangfei

imp conv_add_relu op kernel for gpu

上级 a2bd1692
......@@ -56,5 +56,7 @@ REGISTER_OPERATOR_CPU(fusion_conv_add_relu, ops::FusionConvAddReluOp);
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_conv_add_relu, ops::FusionConvAddReluOp);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL(fusion_conv_add_relu, ops::FusionConvAddReluOp);
#endif
#endif
......@@ -29,9 +29,8 @@ namespace operators {
class FusionConvAddReluOpMatcher : public framework::FusionOpMatcher {
public:
FusionConvAddReluOpMatcher() {
node_ = framework::Node(G_OP_TYPE_CONV);
node_ > std::make_shared<framework::Node>(G_OP_TYPE_ELEMENTWISE_ADD) >
std::make_shared<framework::Node>(G_OP_TYPE_RELU);
node_ = framework::Node(G_OP_TYPE_FUSION_CONV_ADD);
node_ > std::make_shared<framework::Node>(G_OP_TYPE_RELU);
}
void FolderNodes(
......@@ -81,6 +80,15 @@ static framework::FusionOpRegistrar fusion_conv_add_relu_registrar(
new FusionConvAddReluOpMatcher());
#endif
#endif
#ifdef PADDLE_MOBILE_CL
#ifndef CONV_ADD_RELU_REGISTER
#define CONV_ADD_RELU_REGISTER
static framework::FusionOpRegistrar fusion_conv_add_relu_registrar(
new FusionConvAddReluOpMatcher());
#endif
#endif
} // namespace operators
......@@ -95,4 +103,8 @@ USE_OP_CPU(fusion_conv_add_relu);
USE_OP_FPGA(fusion_conv_add_relu);
#endif
#ifdef PADDLE_MOBILE_CL
USE_OP_CL(fusion_conv_add_relu);
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define BIASE
#define RELU
#include "conv_kernel.inc.cl"
......@@ -37,10 +37,11 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("conv_1x1", "conv_add_kernel.cl");
} else if (param->Filter()->dims()[1] == 1) {
param->Filter()->InitCLImage(cl_helper_.CLContext(),
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
param->Filter()->dims()[2] == 3) {
param->Filter()->InitDWImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_kernel.cl");
} else if (param->Filter()->dims()[2] == 3 &&
......@@ -67,6 +68,9 @@ void ConvAddKernel<GPU_CL, float>::Compute(
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
DLOG << "---yangfei30---";
DLOG << *param.Filter();
DLOG << param.Paddings();
auto biase = param.Bias()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvAddReluKernel<GPU_CL, float>::Init(
FusionConvAddReluParam<GPU_CL> *param) {
PADDLE_MOBILE_ENFORCE(
param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
param->Paddings()[0] == param->Paddings()[1],
"need equal");
param->Bias()->InitCLImage(cl_helper_.CLContext(),
this->cl_helper_.CLCommandQueue());
int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
static_cast<int>(param->Paddings()[1]);
param->SetOffset(offset);
if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
param->Filter()->InitNImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("conv_1x1", "conv_add_relu_kernel.cl");
} else if (param->Filter()->dims()[1] == 1 &&
param->Input()->dims()[1] == param->Output()->dims()[1] &&
param->Filter()->dims()[2] == 3) {
param->Filter()->InitDWImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_relu_kernel.cl");
} else if (param->Filter()->dims()[2] == 3 &&
param->Filter()->dims()[3] == 3) {
param->Filter()->InitCLImage(cl_helper_.CLContext(),
cl_helper_.CLCommandQueue());
this->cl_helper_.AddKernel("conv_3x3", "conv_add_relu_kernel.cl");
} else {
PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
}
return true;
}
template <>
void ConvAddReluKernel<GPU_CL, float>::Compute(
const FusionConvAddReluParam<GPU_CL> &param) {
auto kernel = this->cl_helper_.KernelAt(0);
auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
int c_block = default_work_size[0];
int w = default_work_size[1];
int nh = default_work_size[2];
auto input = param.Input()->GetCLImage();
auto filter = param.Filter()->GetCLImage();
DLOG << "---yangfei30---";
DLOG << *param.Filter();
DLOG << param.Paddings();
auto biase = param.Bias()->GetCLImage();
auto output = param.Output()->GetCLImage();
int stride = param.Strides()[0];
int offset = param.Offset();
int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
param.Input()->Converter())
->GetCBlock();
int dilation = param.Dilations()[0];
int input_width = param.Input()->dims()[3];
int input_height = param.Input()->dims()[2];
int output_width = param.Output()->dims()[3];
int output_height = param.Output()->dims()[2];
cl_int status;
status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 1, sizeof(int), &w);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &output);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 7, sizeof(int), &stride);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 8, sizeof(int), &offset);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 9, sizeof(int), &input_c);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 10, sizeof(int), &dilation);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 11, sizeof(int), &input_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 12, sizeof(int), &input_height);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 13, sizeof(int), &output_width);
CL_CHECK_ERRORS(status);
status = clSetKernelArg(kernel, 14, sizeof(int), &output_height);
CL_CHECK_ERRORS(status);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status = clEnqueueNDRangeKernel(
this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
default_work_size.data(), NULL, 0, NULL, NULL);
CL_CHECK_ERRORS(status);
}
template class ConvAddReluKernel<GPU_CL, float>;
} // namespace operators
} // namespace paddle_mobile
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册