Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
44809658
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
44809658
编写于
4月 25, 2019
作者:
Z
zhaojiaying01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adjust gpu code structure
上级
93c3df7b
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
271 addition
and
668 deletion
+271
-668
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
+211
-0
src/operators/kernel/cl/cl-kernel-func/conv_func.h
src/operators/kernel/cl/cl-kernel-func/conv_func.h
+47
-0
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+3
-219
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+2
-137
src/operators/kernel/cl/conv_add_relu_kernel.cpp
src/operators/kernel/cl/conv_add_relu_kernel.cpp
+2
-78
src/operators/kernel/cl/conv_bn_add_relu_kernel.cpp
src/operators/kernel/cl/conv_bn_add_relu_kernel.cpp
+2
-95
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
+2
-75
src/operators/kernel/cl/conv_kernel.cpp
src/operators/kernel/cl/conv_kernel.cpp
+2
-58
src/operators/kernel/conv_add_bn_relu_kernel.h
src/operators/kernel/conv_add_bn_relu_kernel.h
+0
-3
src/operators/kernel/conv_add_kernel.h
src/operators/kernel/conv_add_kernel.h
+0
-3
未找到文件。
src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
0 → 100644
浏览文件 @
44809658
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
#include "framework/cl/cl_image_converter.h"
#include "framework/cl/cl_tensor.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
void
winograd_transform_weight
<
4
,
3
>
(
framework
::
CLHelper
&
cl_helper
,
framework
::
CLImage
&
weight
){};
template
<
>
void
WinogradConv3x3
<
4
,
3
>
(
framework
::
CLHelper
&
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
)
{}
void
ConvAddBnRelu
(
framework
::
CLHelper
&
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
,
const
CLImage
*
biase
,
const
CLImage
*
new_scale
,
const
CLImage
*
new_bias
)
{
auto
kernel
=
cl_helper
.
KernelAt
(
0
);
auto
default_work_size
=
cl_helper
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << param.Input()->dims();
// DLOG << " output dim " << param.Output()->dims();
// DLOG << " filter dim " << param.Filter()->dims();
cl_int
status
;
int
index
=
0
;
if
(
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
if
(
biase
)
{
auto
bias_mem
=
biase
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
if
(
new_scale
&&
new_bias
)
{
auto
new_scale_mem
=
new_scale
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_scale_mem
);
CL_CHECK_ERRORS
(
status
);
auto
new_bias_mem
=
new_bias
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clEnqueueNDRangeKernel
(
cl_helper
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
if
(
biase
)
{
auto
bias_mem
=
biase
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
if
(
new_scale
&&
new_bias
)
{
auto
new_scale_mem
=
new_scale
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_scale_mem
);
CL_CHECK_ERRORS
(
status
);
auto
new_bias_mem
=
new_bias
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
cl_helper
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
\ No newline at end of file
src/operators/kernel/cl/cl-kernel-func/conv_func.h
0 → 100644
浏览文件 @
44809658
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/cl/cl_helper.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
template
<
int
tile
,
int
kernel
>
void
winograd_transform_weight
(
framework
::
CLHelper
&
cl_helper
,
framework
::
CLImage
&
weight
);
template
<
int
tile
,
int
kernel
>
void
WinogradConv3x3
(
framework
::
CLHelper
&
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
);
void
ConvAddBnRelu
(
framework
::
CLHelper
&
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
=
false
,
const
CLImage
*
biase
=
nullptr
,
const
CLImage
*
new_scale
=
nullptr
,
const
CLImage
*
new_bias
=
nullptr
);
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
44809658
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <cmath>
#include "framework/cl/cl_image.h"
#include "framework/cl/cl_tool.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -171,225 +172,8 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
template
<
>
void
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvAddBNReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
auto
new_scale
=
param
.
NewScale
()
->
GetCLImage
();
auto
new_bias
=
param
.
NewBias
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << param.Input()->dims();
// DLOG << " output dim " << param.Output()->dims();
// DLOG << " filter dim " << param.Filter()->dims();
cl_int
status
;
if
(
optimise
)
{
if
(
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
17
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
(),
param
.
NewScale
(),
param
.
NewBias
());
}
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
44809658
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -73,143 +74,7 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
template
<
>
void
ConvAddKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvAddParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
param
.
Output
()
->
InitEmptyImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
(),
param
.
Output
()
->
dims
());
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
cl_int
status
;
if
(
optimise_convadd
&&
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
false
,
param
.
Bias
());
}
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_relu_kernel.cpp
浏览文件 @
44809658
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADDRELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -72,84 +73,7 @@ bool ConvAddReluKernel<GPU_CL, float>::Init(
template
<
>
void
ConvAddReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvAddReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
DLOG
<<
"---yangfei30---"
;
DLOG
<<
*
param
.
Filter
();
DLOG
<<
param
.
Paddings
();
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
());
}
template
class
ConvAddReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_bn_add_relu_kernel.cpp
浏览文件 @
44809658
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_bn_add_relu_kernel.h"
#include <cmath>
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -130,101 +131,7 @@ bool ConvBNAddReluKernel<GPU_CL, float>::Init(
template
<
>
void
ConvBNAddReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvBNAddReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
biase
=
param
.
Bias
()
->
GetCLImage
();
auto
new_scale
=
param
.
NewScale
()
->
GetCLImage
();
auto
new_bias
=
param
.
NewBias
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << *param.Input();
// DLOG << " output dim " <<* param.Output();
// DLOG << " filter dim " << *param.Filter();
// DLOG<<*param.Bias();
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
true
,
param
.
Bias
(),
param
.
NewScale
(),
param
.
NewBias
());
}
template
class
ConvBNAddReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_bn_relu_kernel.cpp
浏览文件 @
44809658
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "operators/kernel/conv_bn_relu_kernel.h"
#include <cmath>
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -126,81 +127,7 @@ bool ConvBNReluKernel<GPU_CL, float>::Init(
template
<
>
void
ConvBNReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvBNReluParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
new_scale
=
param
.
NewScale
()
->
GetCLImage
();
auto
new_bias
=
param
.
NewBias
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
cl_int
status
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
ConvAddBnRelu
(
this
->
cl_helper_
,
param
,
true
,
nullptr
,
param
.
NewScale
(),
param
.
NewBias
());
}
template
class
ConvBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_kernel.cpp
浏览文件 @
44809658
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -66,64 +67,7 @@ bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
template
<
>
void
ConvKernel
<
GPU_CL
,
float
>::
Compute
(
const
ConvParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
cl_int
status
;
DLOG
<<
" begin set kernel arg "
;
DLOG
<<
" c block "
<<
c_block
;
DLOG
<<
" w "
<<
w
;
DLOG
<<
" nh "
<<
nh
;
DLOG
<<
" stride "
<<
stride
;
DLOG
<<
" offset "
<<
offset
;
DLOG
<<
" input_c "
<<
input_c
;
DLOG
<<
" dilation "
<<
dilation
;
DLOG
<<
" input width "
<<
input_width
;
DLOG
<<
" input height "
<<
input_height
;
DLOG
<<
" output width "
<<
output_width
;
DLOG
<<
" output height "
<<
output_height
;
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
output
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
int
),
&
stride
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
offset
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
input_c
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
dilation
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
input_width
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_height
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
output_width
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_height
);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
ConvAddBnRelu
(
this
->
cl_helper_
,
param
);
}
template
class
ConvKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/conv_add_bn_relu_kernel.h
浏览文件 @
44809658
...
...
@@ -36,9 +36,6 @@ class ConvAddBNReluKernel
public:
void
Compute
(
const
FusionConvAddBNReluParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddBNReluParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
}
// namespace operators
...
...
src/operators/kernel/conv_add_kernel.h
浏览文件 @
44809658
...
...
@@ -41,9 +41,6 @@ class ConvAddKernel
public:
void
Compute
(
const
FusionConvAddParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录