conv_add_kernel.cpp 5.7 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"
Z
zhaojiaying01 已提交
18
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
L
liuruilong 已提交
19 20 21 22 23 24

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
L
liuruilong 已提交
25
  PADDLE_MOBILE_ENFORCE(
L
liuruilong 已提交
26
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
L
liuruilong 已提交
27
          param->Paddings()[0] == param->Paddings()[1],
L
liuruilong 已提交
28
      "need equal");
29 30 31 32
  if (!param->Bias()->isInit()) {
    param->Bias()->InitCLImage(cl_helper_.CLContext(),
                               this->cl_helper_.CLCommandQueue());
  }
L
liuruilong 已提交
33

L
liuruilong 已提交
34 35 36 37
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

38 39
  const std::string conv_kernel_file = "conv_kernel.cl";
  const std::string wino_kernel_file = "winograd_transform.cl";
40 41 42 43 44 45
  std::string build_options;
  if (param->Output()->dims() == param->Bias()->dims()) {
    build_options = "-DBIASE_ELE";
  } else {
    build_options = "-DBIASE_CH";
  }
46

L
liuruilong 已提交
47
  if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
48
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW1x1_FLOAT;
L
liuruilong 已提交
49 50
    param->Filter()->InitNImage(cl_helper_.CLContext(),
                                cl_helper_.CLCommandQueue());
51 52 53

    this->cl_helper_.AddKernel("conv_1x1_spl", conv_kernel_file, build_options);

Y
yangfei 已提交
54 55 56 57
  } else if (param->Filter()->dims()[1] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
    param->Filter()->InitDWImage(cl_helper_.CLContext(),
L
liuruilong 已提交
58
                                 cl_helper_.CLCommandQueue());
Z
zhaojiaying01 已提交
59 60 61 62 63 64 65 66 67
    if (param->Strides()[0] == 1 && param->Dilations()[0] == 1) {
      param->ExecMode() = ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3S1_FLOAT;
      this->cl_helper_.AddKernel("depth_conv_3x3s1", conv_kernel_file,
                                 build_options);
    } else {
      param->ExecMode() = ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3_FLOAT;
      this->cl_helper_.AddKernel("depth_conv_3x3", conv_kernel_file,
                                 build_options);
    }
L
liuruilong 已提交
68 69 70

  } else if (param->Filter()->dims()[2] == 3 &&
             param->Filter()->dims()[3] == 3) {
71 72 73 74 75 76 77 78 79 80 81 82 83 84
    //    if (param->Strides()[0] == param->Strides()[1] &&
    //        param->Strides()[0] == 1 && param->Input()->dims()[2] >= 32) {
    //      param->ExecMode() = ConvParam<GPU_CL>::EXEC_WINOGRAD3X3_FLOAT;
    //      this->cl_helper_.AddKernel("winograd_filter_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //      this->cl_helper_.AddKernel("winograd_input_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //      this->cl_helper_.AddKernel("matmul", "matmul.cl");
    //      this->cl_helper_.AddKernel("winograd_output_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //
    //      winograd_transform_weight<4, 3>(&this->cl_helper_, param->Filter());
    //
    //    } else {
85 86 87 88 89

    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_FLOAT;
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
    this->cl_helper_.AddKernel("conv_3x3spl", conv_kernel_file, build_options);
90
    //    }
L
liuruilong 已提交
91

Y
yangfei 已提交
92 93
  } else if (param->Filter()->dims()[2] == 7 &&
             param->Filter()->dims()[3] == 7) {
94
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW7x7_FLOAT;
Y
yangfei 已提交
95 96
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
97 98 99

    this->cl_helper_.AddKernel("conv_7x7", conv_kernel_file, build_options);

Y
yangfei 已提交
100 101
  } else if (param->Filter()->dims()[2] == 5 &&
             param->Filter()->dims()[3] == 5) {
102
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW5x5_FLOAT;
Y
yangfei 已提交
103 104
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
105 106

    this->cl_helper_.AddKernel("conv_5x5", conv_kernel_file, build_options);
L
liuruilong 已提交
107 108
  }

L
liuruilong 已提交
109 110 111 112 113
  return true;
}

template <>
void ConvAddKernel<GPU_CL, float>::Compute(
L
liuruilong 已提交
114
    const FusionConvAddParam<GPU_CL> &param) {
115 116 117 118 119 120 121 122 123 124
  switch (param.ExecMode()) {
    case ConvParam<GPU_CL>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<4, 3>(&this->cl_helper_, param, false, param.Bias());
      break;
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW1x1_FLOAT:
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW5x5_FLOAT:
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW7x7_FLOAT:
    case ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3_FLOAT:
      ConvAddBnRelu(&this->cl_helper_, param, false, param.Bias());
      break;
Z
zhaojiaying01 已提交
125 126 127
    case ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3S1_FLOAT:
      DWConvAddBnRelu(&this->cl_helper_, param, false, param.Bias());
      break;
128
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_FLOAT:
129 130
      SWConvAddBnRelu(&this->cl_helper_, param, false, param.Bias());
      break;
131 132 133 134
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
L
liuruilong 已提交
135
}
L
liuruilong 已提交
136 137 138 139 140 141 142

template class ConvAddKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif