activation_image_compute.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/opencl/cl_half.h"
16 17 18 19 20 21 22 23 24 25 26 27
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

28 29 30 31
class ActivationComputeImageDefault
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
32 33 34 35
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
36
    return "Activation using cl::Image2D(ImageDefault/RGBA), kFP16";
37
  }
38

39 40
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
41 42
    act_param_ = param_.get_mutable<param_t>();
    int act_type = static_cast<int>(act_param_->active_type);
43 44
    VLOG(1) << "ActivationTypeToStr(act_param_->active_type):"
            << ActivationTypeToStr(act_param_->active_type);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    switch (act_type) {
      case 1:
        kernel_func_name_ = "relu";
        break;
      case 2:
        kernel_func_name_ = "relu6";
        threshold_ = act_param_->Relu_clipped_coef;
        break;
      case 4:
        kernel_func_name_ = "leaky_relu";
        scale_ = act_param_->Leaky_relu_alpha;
        break;
      case 5:
        kernel_func_name_ = "sigmoid";
        break;
      case 6:
61 62 63 64 65 66 67 68
        kernel_func_name_ = "tanh_act";
        break;
      case 7:
        kernel_func_name_ = "swish";
        scale_ = act_param_->Swish_beta;
        break;
      case 8:
        kernel_func_name_ = "exp_act";
69 70
        break;
      default:
71
        LOG(FATAL) << "This act type:" << act_type << " doesn't support.";
72 73
        return;
    }
74
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
75
    context.cl_context()->AddKernel(
76
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
77 78 79 80 81
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
82
    auto* x_img = param.X->data<half_t, cl::Image2D>();
83
    auto image_shape = InitImageDimInfoWith(x_dims);
84
    auto* out_img = param.Out->mutable_data<half_t, cl::Image2D>(
85 86
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
87 88 89 90 91 92

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
93

94
    int arg_idx = 0;
95
    cl_int status = kernel.setArg(arg_idx, *x_img);
96
    CL_CHECK_FATAL(status);
97
    status = kernel.setArg(++arg_idx, *out_img);
98
    CL_CHECK_FATAL(status);
99
    status = kernel.setArg(++arg_idx, threshold_);
100
    CL_CHECK_FATAL(status);
101
    status = kernel.setArg(++arg_idx, scale_);
102
    CL_CHECK_FATAL(status);
103 104 105 106 107 108 109 110 111

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
112 113 114
    VLOG(4) << "threshold:" << threshold_;
    VLOG(4) << "scale:" << scale_;
    VLOG(4) << "kernel func name:" << kernel_func_name_;
115 116 117 118 119 120 121 122 123 124 125 126

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
127
    context.cl_wait_list()->emplace(out_img, event_);
128 129 130
  }

 private:
131 132 133 134 135
  param_t* act_param_{nullptr};
  std::string kernel_func_name_{};
  float threshold_{6.f};
  float scale_{1.f};
  std::string build_options_{"-DCL_DTYPE_half"};
136 137 138 139 140 141
  std::shared_ptr<cl::Event> event_{new cl::Event};
};
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
// leakyRelu
REGISTER_LITE_KERNEL(
    leaky_relu,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// swish
REGISTER_LITE_KERNEL(
    swish,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// exp
REGISTER_LITE_KERNEL(
180
    exp,
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

196 197
// tanh
REGISTER_LITE_KERNEL(
198
    tanh,
199 200 201 202 203 204 205 206 207 208 209 210 211 212
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();
213

214
// Relu
215 216 217 218 219 220 221
REGISTER_LITE_KERNEL(
    relu,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
222 223
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
224
                                      PRECISION(kFP16),
225 226 227
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
228 229 230 231 232
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// Relu6
233 234 235 236 237 238 239
REGISTER_LITE_KERNEL(
    relu6,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
240 241 242 243 244 245 246
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
247 248 249
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

250
// Sigmoid
251 252 253 254 255 256 257
REGISTER_LITE_KERNEL(
    sigmoid,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
258 259 260 261 262 263 264 265 266
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();