activation_image_compute.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/opencl/cl_half.h"
16 17 18 19 20 21 22 23 24 25 26 27
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

28 29 30 31
class ActivationComputeImageDefault
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
32 33 34 35
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
36
    return "Activation using cl::Image2D(ImageDefault/RGBA), kFP16";
37
  }
38

39 40
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
41 42
    act_param_ = param_.get_mutable<param_t>();
    int act_type = static_cast<int>(act_param_->active_type);
43 44
    VLOG(1) << "ActivationTypeToStr(act_param_->active_type):"
            << ActivationTypeToStr(act_param_->active_type);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    switch (act_type) {
      case 1:
        kernel_func_name_ = "relu";
        break;
      case 2:
        kernel_func_name_ = "relu6";
        threshold_ = act_param_->Relu_clipped_coef;
        break;
      case 4:
        kernel_func_name_ = "leaky_relu";
        scale_ = act_param_->Leaky_relu_alpha;
        break;
      case 5:
        kernel_func_name_ = "sigmoid";
        break;
      case 6:
61 62 63 64 65 66 67 68
        kernel_func_name_ = "tanh_act";
        break;
      case 7:
        kernel_func_name_ = "swish";
        scale_ = act_param_->Swish_beta;
        break;
      case 8:
        kernel_func_name_ = "exp_act";
69 70
        break;
      default:
71
        LOG(FATAL) << "This act type:" << act_type << " doesn't support.";
72 73
        return;
    }
74
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
75
    context.cl_context()->AddKernel(
76
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
77 78 79 80 81
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
82
    auto* x_img = param.X->data<half_t, cl::Image2D>();
83
    auto image_shape = InitImageDimInfoWith(x_dims);
84
    auto* out_img = param.Out->mutable_data<half_t, cl::Image2D>(
85 86
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
87 88 89 90 91 92

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
93

94
    int arg_idx = 0;
95
    cl_int status = kernel.setArg(arg_idx, *x_img);
96
    CL_CHECK_FATAL(status);
97
    status = kernel.setArg(++arg_idx, *out_img);
98
    CL_CHECK_FATAL(status);
99
    status = kernel.setArg(++arg_idx, threshold_);
100
    CL_CHECK_FATAL(status);
101
    status = kernel.setArg(++arg_idx, scale_);
102
    CL_CHECK_FATAL(status);
103 104 105 106 107 108 109 110 111

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
112 113 114
    VLOG(4) << "threshold:" << threshold_;
    VLOG(4) << "scale:" << scale_;
    VLOG(4) << "kernel func name:" << kernel_func_name_;
115 116 117 118 119 120 121 122 123 124 125 126

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
127
    context.cl_wait_list()->emplace(out_img, event_);
128 129 130
  }

 private:
131 132 133 134 135
  param_t* act_param_{nullptr};
  std::string kernel_func_name_{};
  float threshold_{6.f};
  float scale_{1.f};
  std::string build_options_{"-DCL_DTYPE_half"};
136 137 138 139 140 141
  std::shared_ptr<cl::Event> event_{new cl::Event};
};
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
// leakyRelu
REGISTER_LITE_KERNEL(
    leaky_relu,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
// swish
REGISTER_LITE_KERNEL(
    swish,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// exp
REGISTER_LITE_KERNEL(
    exp_act,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

196 197
// tanh
REGISTER_LITE_KERNEL(
198
    tanh_act,
199 200 201 202 203 204 205 206 207 208 209 210 211 212
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();
213

214
// Relu
215 216 217 218 219 220 221
REGISTER_LITE_KERNEL(
    relu,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
222 223
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
224
                                      PRECISION(kFP16),
225 226 227
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
228 229 230 231 232
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// Relu6
233 234 235 236 237 238 239
REGISTER_LITE_KERNEL(
    relu6,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
240 241 242 243 244 245 246
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
247 248 249
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

250
// Sigmoid
251 252 253 254 255 256 257
REGISTER_LITE_KERNEL(
    sigmoid,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
258 259 260 261 262 263 264 265 266
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();