activation_image_compute.cc 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/opencl/cl_half.h"
16 17 18 19 20 21 22 23 24 25 26 27
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

28 29 30
class ReluComputeImageDefault : public KernelLite<TARGET(kOpenCL),
                                                  PRECISION(kFP16),
                                                  DATALAYOUT(kImageDefault)> {
31 32 33 34
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
35
    return "Relu using cl::Image2D(ImageDefault/RGBA), kFP16";
36
  }
37

38 39 40
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
41
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
42 43 44 45 46
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
47
    auto* x_buf = param.X->data<half_t, cl::Image2D>();
48
    auto image_shape = InitImageDimInfoWith(x_dims);
49
    auto* out_buf = param.Out->mutable_data<half_t, cl::Image2D>(
50 51
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
52 53 54 55 56 57 58 59 60 61 62 63 64

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

65 66 67 68 69 70 71 72 73 74 75 76
    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
77 78 79 80 81 82 83 84
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
85 86 87
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
88 89 90
  }

 private:
91 92
  std::string kernel_func_name_{"relu"};
  std::string build_options_{"-DCL_DTYPE_half -DRELU"};
93 94 95
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

96 97 98
class Relu6ComputeImageDefault : public KernelLite<TARGET(kOpenCL),
                                                   PRECISION(kFP16),
                                                   DATALAYOUT(kImageDefault)> {
99 100 101 102
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
103
    return "Relu6 using cl::Image2D(ImageDefault/RGBA), kFP16";
104 105 106 107 108
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
109
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
110 111 112 113 114
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
115
    auto* x_buf = param.X->data<half_t, cl::Image2D>();
116
    auto image_shape = InitImageDimInfoWith(x_dims);
117
    auto* out_buf = param.Out->mutable_data<half_t, cl::Image2D>(
118 119
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
120
    auto threshold = param.Relu_clipped_coef;
121 122 123 124 125 126 127 128 129 130 131 132

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);
133 134
    status = kernel.setArg(++arg_idx, threshold);
    CL_CHECK_FATAL(status);
135 136 137 138 139 140 141 142 143

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
144
    VLOG(4) << "threshold:" << threshold;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
  }

 private:
163 164
  std::string kernel_func_name_{"relu6"};
  std::string build_options_{"-DCL_DTYPE_half -DRELU6"};
165 166 167
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

168
class SigmoidComputeImageDefault
169 170 171 172 173 174 175 176 177 178 179 180 181
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
    return "Sigmoid using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
182
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
183 184 185 186 187 188
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
    auto* x_buf =
189 190
        param.X->data<half_t,
                      cl::Image2D>();  // use half_t represents half float
191
    auto image_shape = InitImageDimInfoWith(x_dims);
192 193 194 195
    auto* out_buf = param.Out->mutable_data<half_t, cl::Image2D>(  // use half_t
        // represents half float
        image_shape["width"],
        image_shape["height"]);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    const auto& y_dims = param.Out->dims();  // useless: check dim only

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
  }

 private:
  std::string kernel_func_name_{"sigmoid"};
  std::string build_options_{"-DCL_DTYPE_half -DSIGMOID"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

246 247 248 249 250 251 252
// Relu
REGISTER_LITE_KERNEL(relu,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::ReluComputeImageDefault,
                     ImageDefault)
253 254
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
255
                                      PRECISION(kFP16),
256 257 258
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// Relu6
REGISTER_LITE_KERNEL(relu6,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::Relu6ComputeImageDefault,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
277 278 279
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

280 281 282 283 284 285 286
// Sigmoid
REGISTER_LITE_KERNEL(sigmoid,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::SigmoidComputeImageDefault,
                     ImageDefault)
287 288 289 290 291 292 293 294 295
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();