activation_image_compute.cc 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/opencl/cl_half.h"
16 17 18 19 20 21 22 23 24 25 26 27
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

28 29 30 31
class ActivationComputeImageDefault
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
32 33 34 35
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
36
    return "Activation using cl::Image2D(ImageDefault/RGBA), kFP16";
37
  }
38

39 40
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    act_param_ = param_.get_mutable<param_t>();
    int act_type = static_cast<int>(act_param_->active_type);
    switch (act_type) {
      case 1:
        kernel_func_name_ = "relu";
        break;
      case 2:
        kernel_func_name_ = "relu6";
        threshold_ = act_param_->Relu_clipped_coef;
        break;
      case 4:
        kernel_func_name_ = "leaky_relu";
        scale_ = act_param_->Leaky_relu_alpha;
        break;
      case 5:
        kernel_func_name_ = "sigmoid";
        break;
      case 6:
59 60 61 62 63 64 65 66
        kernel_func_name_ = "tanh_act";
        break;
      case 7:
        kernel_func_name_ = "swish";
        scale_ = act_param_->Swish_beta;
        break;
      case 8:
        kernel_func_name_ = "exp_act";
67 68 69 70 71
        break;
      default:
        printf("This act type: %d doesn't support \n", act_type);
        return;
    }
72
    context.cl_context()->AddKernel(
73
        kernel_func_name_, "image/activation_kernel.cl", build_options_);
74 75 76 77 78
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
79
    auto* x_img = param.X->data<half_t, cl::Image2D>();
80
    auto image_shape = InitImageDimInfoWith(x_dims);
81
    auto* out_img = param.Out->mutable_data<half_t, cl::Image2D>(
82 83
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only
84 85 86 87 88 89 90

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    int arg_idx = 0;
91
    cl_int status = kernel.setArg(arg_idx, *x_img);
92
    CL_CHECK_FATAL(status);
93
    status = kernel.setArg(++arg_idx, *out_img);
94
    CL_CHECK_FATAL(status);
95
    status = kernel.setArg(++arg_idx, threshold_);
96
    CL_CHECK_FATAL(status);
97
    status = kernel.setArg(++arg_idx, scale_);
98
    CL_CHECK_FATAL(status);
99 100 101 102 103 104 105 106 107

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
108 109 110
    VLOG(4) << "threshold:" << threshold_;
    VLOG(4) << "scale:" << scale_;
    VLOG(4) << "kernel func name:" << kernel_func_name_;
111 112 113 114 115 116 117 118 119 120 121 122

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
123
    context.cl_wait_list()->emplace(out_img, event_);
124 125 126
  }

 private:
127 128 129 130 131
  param_t* act_param_{nullptr};
  std::string kernel_func_name_{};
  float threshold_{6.f};
  float scale_{1.f};
  std::string build_options_{"-DCL_DTYPE_half"};
132 133 134 135 136 137
  std::shared_ptr<cl::Event> event_{new cl::Event};
};
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
// leakyRelu
REGISTER_LITE_KERNEL(
    leaky_relu,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
// swish
REGISTER_LITE_KERNEL(
    swish,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// exp
REGISTER_LITE_KERNEL(
    exp_act,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

192 193
// tanh
REGISTER_LITE_KERNEL(
194
    tanh_act,
195 196 197 198 199 200 201 202 203 204 205 206 207 208
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();
209

210
// Relu
211 212 213 214 215 216 217
REGISTER_LITE_KERNEL(
    relu,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
218 219
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
220
                                      PRECISION(kFP16),
221 222 223
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
224 225 226 227 228
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

// Relu6
229 230 231 232 233 234 235
REGISTER_LITE_KERNEL(
    relu6,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
236 237 238 239 240 241 242
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
243 244 245
                                       DATALAYOUT(kImageDefault))})
    .Finalize();

246
// Sigmoid
247 248 249 250 251 252 253
REGISTER_LITE_KERNEL(
    sigmoid,
    kOpenCL,
    kFP16,
    kImageDefault,
    paddle::lite::kernels::opencl::ActivationComputeImageDefault,
    ImageDefault)
254 255 256 257 258 259 260 261 262
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();