precision_profiler.h 15.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*
 * This file implements BasicProfile, a profiler that helps to profile the basic
 * CPU execution. It can display the min, max, average lantency of the execution
 * of each kernel.
 */
#pragma once
21
#include <cmath>
Y
Yan Chunwei 已提交
22 23 24
#include <string>
#include <vector>
#include "lite/core/program.h"
25
#ifdef LITE_WITH_X86
26
#include "lite/fluid/float16.h"
27
#endif
Y
Yan Chunwei 已提交
28

29 30 31 32 33 34
#ifdef LITE_WITH_OPENCL
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/kernels/opencl/image_helper.h"
#endif

Y
Yan Chunwei 已提交
35 36 37 38
namespace paddle {
namespace lite {
namespace profile {

T
TianXiaogang 已提交
39
template <typename dtype>
40
static bool write_tensorfile(const Tensor* tensor, const std::string& locate) {
T
TianXiaogang 已提交
41
  if (locate.find('/') != std::string::npos) {
42
    return false;
T
TianXiaogang 已提交
43 44 45 46
  }
  FILE* fp = fopen(locate.c_str(), "w");
  if (fp == nullptr) {
    LOG(ERROR) << "file open field " << locate;
47
    return false;
T
TianXiaogang 已提交
48 49 50 51 52 53 54
  } else {
    const dtype* data = tensor->data<dtype>();
    for (int i = 0; i < tensor->numel(); ++i) {
      fprintf(fp, "[%d] %f \n", i, static_cast<float>(data[i]));
    }
  }
  fclose(fp);
55
  return true;
T
TianXiaogang 已提交
56 57
}

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
static bool write_precision_summary_tofile(const std::string& string,
                                           const std::string& log_dir = "") {
  if (log_dir == "") {
    LOG(INFO) << "The `log_dir` of precision summary file is not set. log_dir:"
              << log_dir;
    return false;
  }
  FILE* fp = fopen(log_dir.c_str(), "a");
  if (fp == nullptr) {
    LOG(INFO) << "Open precision summary file:" << log_dir << "failed.";
    return false;
  } else {
    fprintf(fp, "%s\n", string.c_str());
  }
  fclose(fp);
  return true;
}

Y
Yan Chunwei 已提交
76 77
class PrecisionProfiler {
 public:
78 79 80 81 82 83 84 85 86 87 88 89 90
  // TODO(ysh329): need to remove `explicit PrecisionProfiler`
  // keep this method only for arm/math/conditional
  explicit PrecisionProfiler(const Instruction* inst) {
    std::string inst_precison_str = GetInstPrecision(inst);
  }

  PrecisionProfiler() {}

  std::string GetSummaryHeader() {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
91
    ss << "\n\n========================================= "
92 93 94 95
       << "Detailed Precision Profiler Summary "
       << "=========================================" << std::endl;
    ss << setw(45) << left << "operator:(kernel_info)"
       << " " << setw(70) << left << "output_tensor_name:(tensor_info)"
96 97 98 99
       << " " << setw(15) << left << "dims"
       << " " << setw(15) << left << "mean"
       << " " << setw(15) << left << "std_deviation"
       << " " << setw(15) << left << "ave_grow_rate*" << std::endl;
100

101 102 103 104 105 106 107
    // write to file with path: `log_dir`
    if (log_dir_ != "") {
      FILE* fp = fopen(log_dir_.c_str(), "a");
      std::string header_str{ss.str()};
      fprintf(fp, "%s\n", header_str.c_str());
      fclose(fp);
    }
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    return ss.str();
  }

  template <typename T>
  double compute_mean(const T* in, const size_t length) {
    double sum = 0.;
    for (size_t i = 0; i < length; ++i) {
      sum += in[i];
    }
    return sum / length;
  }

  template <typename T>
  double compute_standard_deviation(const T* in,
                                    const size_t length,
                                    bool has_mean = false,
                                    double mean = 10000) {
    if (!has_mean) {
      mean = compute_mean<T>(in, length);
    }

    double variance = 0.;
    for (size_t i = 0; i < length; ++i) {
      variance += pow((in[i] - mean), 2);
    }
    variance /= length;
    return sqrt(variance);
  }

137 138 139 140 141 142 143 144 145 146 147
  template <typename T>
  double compute_average_grow_rate(const T* in, const size_t length) {
    const double eps = 1e-5;
    double ave_grow_rate = 0.0f;
    for (size_t i = 1; i < length; ++i) {
      ave_grow_rate += (in[i] - in[i - 1]) / (in[i - 1] + eps);
    }
    ave_grow_rate /= length;
    return ave_grow_rate;
  }

148 149 150 151 152 153 154 155 156 157 158 159 160 161
  // check if output tensor unused
  bool is_unused(const Tensor* in) {
    if (!in->data<int8_t>()) {
      return true;
    }
    return false;
  }

  void compute_tensor_precision_info(const Tensor* in,
                                     TargetType target_type,
                                     PrecisionType precision_type,
                                     DataLayoutType layout_type,
                                     double* mean,
                                     double* std_dev,
162 163 164
                                     double* ave_grow_rate,
                                     std::string name = "inst",
                                     bool write_result_to_file = false) {
165 166 167 168 169 170 171 172
    std::string unsupported_error_log =
        "Unsupported precision profile for kernel registered on" +
        TargetToStr(target_type) + "/" + PrecisionToStr(precision_type) + "/" +
        DataLayoutToStr(layout_type);

    if (target_type == TARGET(kARM) || target_type == TARGET(kHost) ||
        target_type == TARGET(kX86)) {
      switch (precision_type) {
Y
Yan Chunwei 已提交
173 174
        case PRECISION(kFloat): {
          auto ptr = in->data<float>();
175 176 177
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
178 179
          *ave_grow_rate = compute_average_grow_rate<float>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
180
          return;
T
TianXiaogang 已提交
181 182 183
        }
        case PRECISION(kAny): {
          auto ptr = in->data<float>();
184 185 186
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
187 188
          *ave_grow_rate = compute_average_grow_rate<float>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
189
          return;
Y
Yan Chunwei 已提交
190 191 192
        }
        case PRECISION(kInt8): {
          auto ptr = in->data<int8_t>();
193 194 195
          *mean = compute_mean<int8_t>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<int8_t>(ptr, in->numel(), true, *mean);
196 197
          *ave_grow_rate = compute_average_grow_rate<int8_t>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<int8_t>(in, name);
198
          return;
Y
Yan Chunwei 已提交
199 200 201
        }
        case PRECISION(kInt32): {
          auto ptr = in->data<int32_t>();
202 203 204
          *mean = compute_mean<int32_t>(ptr, in->numel());
          *std_dev = compute_standard_deviation<int32_t>(
              ptr, in->numel(), true, *mean);
205 206
          *ave_grow_rate = compute_average_grow_rate<int32_t>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<int32_t>(in, name);
207 208
          return;
        }
209 210 211 212 213 214 215
        case PRECISION(kInt64): {
          auto ptr = in->data<int64_t>();
          *mean = compute_mean<int64_t>(ptr, in->numel());
          *std_dev = compute_standard_deviation<int64_t>(
              ptr, in->numel(), true, *mean);
          return;
        }
216 217 218
        default:
          *mean = -333333333333;
          *std_dev = -33333333333;
219
          *ave_grow_rate = -33333333333;
220 221 222 223 224
          LOG(ERROR) << unsupported_error_log;
          return;
      }
#ifdef LITE_WITH_OPENCL
    } else if (target_type == TARGET(kOpenCL)) {
225
      CLRuntime::Global()->command_queue().finish();
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
      switch (layout_type) {
        case DATALAYOUT(kImageDefault): {
          paddle::lite::CLImageConverterDefault default_convertor;
          auto image_shape = default_convertor.InitImageDimInfoWith(in->dims());
          size_t im_w = image_shape[0];
          size_t im_h = image_shape[1];
          VLOG(1) << "image shape(W,H) of " << name << ": " << im_w << " "
                  << im_h;
          std::vector<uint16_t> in_data_v(im_w * im_h * 4);
          std::vector<float> real_out_v(in->numel());
          const size_t cl_image2d_row_pitch{0};
          const size_t cl_image2d_slice_pitch{0};
          TargetWrapperCL::ImgcpySync(in_data_v.data(),
                                      in->data<uint16_t, cl::Image2D>(),
                                      im_w,
                                      im_h,
                                      cl_image2d_row_pitch,
                                      cl_image2d_slice_pitch,
                                      IoDirection::DtoH);
          default_convertor.ImageToNCHW(
              in_data_v.data(), real_out_v.data(), image_shape, in->dims());
          CHECK(real_out_v.size() == in->numel());
          *mean = compute_mean<float>(real_out_v.data(), real_out_v.size());
          *std_dev = compute_standard_deviation<float>(
              real_out_v.data(), in->numel(), true, *mean);
251 252 253
          *ave_grow_rate = compute_average_grow_rate<float>(real_out_v.data(),
                                                            real_out_v.size());
          write_result_to_file&& write_tensorfile<float>(in, name);
254 255 256 257 258 259 260 261 262 263 264 265
          return;
        }
        case DATALAYOUT(kNCHW): {
          std::vector<float> in_data_v(in->numel(), 0);
          TargetWrapperCL::MemcpySync(in_data_v.data(),
                                      in->data<float>(),
                                      in->numel() * sizeof(float),
                                      IoDirection::DtoH);
          VLOG(1) << name << ":" << in->numel();
          *mean = compute_mean<float>(in_data_v.data(), in->numel());
          *std_dev = compute_standard_deviation<float>(
              in_data_v.data(), in->numel(), true, *mean);
266 267 268
          *ave_grow_rate =
              compute_average_grow_rate<float>(in_data_v.data(), in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
269
          return;
Y
Yan Chunwei 已提交
270 271
        }
        default:
272 273
          *mean = -222222222222;
          *std_dev = -22222222222;
274
          *ave_grow_rate = -22222222222;
275 276
          LOG(ERROR) << unsupported_error_log;
          return;
Y
Yan Chunwei 已提交
277
      }
278 279 280 281
#endif
    } else {
      *mean = -111111111111;
      *std_dev = -11111111111;
282
      *ave_grow_rate = -11111111111;
283 284 285 286 287 288 289 290 291 292
      LOG(ERROR) << unsupported_error_log;
      return;
    }
  }

  std::string GetInstPrecision(const Instruction* inst = nullptr) {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
293
    bool write_result_to_file = false;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

    VLOG(1) << ">> Running kernel: " << inst->op()->op_info()->Repr()
            << " registered on " << TargetToStr(inst->kernel()->target()) << "/"
            << PrecisionToStr(inst->kernel()->precision()) << "/"
            << DataLayoutToStr(inst->kernel()->layout());

    std::string kernel_repr = inst->op()->op_info()->Repr();
    std::string kernel_place = TargetToStr(inst->kernel()->target()) + "/" +
                               PrecisionToStr(inst->kernel()->precision()) +
                               "/" + DataLayoutToStr(inst->kernel()->layout());
    std::string op_name = inst->op()->op_info()->Type();

    if (inst->op()->op_info()->Type() != "fetch") {
      auto op = const_cast<lite::OpLite*>(inst->op());
      auto kernel = inst->kernel();
Y
Yan Chunwei 已提交
309 310 311 312 313 314
      auto op_scope = op->scope();
      auto out_names = op->op_info()->output_names();
      for (auto& out_name : out_names) {
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
T
TianXiaogang 已提交
315

Y
Yan Chunwei 已提交
316
        if (type->IsTensor()) {
317 318 319 320
          const Tensor* tout =
              op_scope->FindVar(out_name)->GetMutable<Tensor>();
          double mean = -999999;
          double std_dev = -100000;
321
          double ave_grow_rate = 99999;
322 323
          std::string mean_str{"unused"};
          std::string std_dev_str{"unused"};
324
          std::string ave_grow_rate_str{"unused"};
325 326 327 328 329 330 331 332

          if (!is_unused(tout)) {
            compute_tensor_precision_info(tout,
                                          type->target(),
                                          type->precision(),
                                          type->layout(),
                                          &mean,
                                          &std_dev,
333 334 335 336 337 338
                                          &ave_grow_rate,
                                          out_name,
                                          write_result_to_file);
            mean_str = std::to_string(mean);
            std_dev_str = std::to_string(std_dev);
            ave_grow_rate_str = std::to_string(ave_grow_rate);
339 340 341 342 343 344 345 346 347 348
          }
          std::string kernel_info = op_name + ":" + kernel_place;
          std::string output_arg_info = out_name + ":" +
                                        TargetToStr(type->target()) + "/" +
                                        PrecisionToStr(type->precision()) +
                                        "/" + DataLayoutToStr(type->layout());

          ss << setw(45) << left << kernel_info << " " << setw(70) << left
             << output_arg_info << " " << setw(15) << left << tout->dims()
             << " " << setw(15) << left << mean_str << " " << setw(15) << left
349 350
             << std_dev_str << " " << setw(15) << left << ave_grow_rate_str
             << std::endl;
Y
Yan Chunwei 已提交
351
        } else if (type->IsTensorList()) {
352
          auto touts =
Y
Yan Chunwei 已提交
353
              op_scope->FindVar(out_name)->GetMutable<std::vector<Tensor>>();
354 355 356 357
          for (auto t : *touts) {
            const Tensor* tout = &t;
            double mean = -999999;
            double std_dev = -100000;
358
            double ave_grow_rate = 99999;
359 360
            std::string mean_str{"unused"};
            std::string std_dev_str{"unused"};
361
            std::string ave_grow_rate_str{"unused"};
362 363 364 365 366 367 368 369

            if (!is_unused(tout)) {
              compute_tensor_precision_info(tout,
                                            type->target(),
                                            type->precision(),
                                            type->layout(),
                                            &mean,
                                            &std_dev,
370 371 372 373 374 375
                                            &ave_grow_rate,
                                            out_name,
                                            write_result_to_file);
              mean_str = std::to_string(mean);
              std_dev_str = std::to_string(std_dev);
              ave_grow_rate_str = std::to_string(ave_grow_rate);
376 377 378 379 380 381 382 383 384 385
            }
            std::string kernel_info = op_name + ":" + kernel_place;
            std::string output_arg_info = out_name + ":" +
                                          TargetToStr(type->target()) + "/" +
                                          PrecisionToStr(type->precision()) +
                                          "/" + DataLayoutToStr(type->layout());

            ss << setw(45) << left << kernel_info << " " << setw(70) << left
               << output_arg_info << " " << setw(15) << left << tout->dims()
               << " " << setw(15) << left << mean_str << " " << setw(15) << left
386 387
               << std_dev_str << " " << setw(15) << left << ave_grow_rate_str
               << std::endl;
Y
Yan Chunwei 已提交
388 389 390 391
          }
        }
      }
    }
392
    write_precision_summary_tofile(ss.str(), log_dir_);
393
    return ss.str();
Y
Yan Chunwei 已提交
394
  }
395 396 397

 private:
  std::string log_dir_{"/storage/emulated/0/precision.log"};
Y
Yan Chunwei 已提交
398 399 400 401 402 403
};

}  // namespace profile
}  // namespace lite
}  // namespace paddle

404 405
// TODO(ysh329): need to remove.
// keep this method only for arm/math/conditional_block_compute
Y
Yan Chunwei 已提交
406 407
#define LITE_PRECISION_PROFILE(inst) \
  { auto a = paddle::lite::profile::PrecisionProfiler(&inst); }