precision_profiler.h 15.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*
 * This file implements BasicProfile, a profiler that helps to profile the basic
 * CPU execution. It can display the min, max, average lantency of the execution
 * of each kernel.
 */
#pragma once
21
#include <cmath>
Y
Yan Chunwei 已提交
22 23 24
#include <string>
#include <vector>
#include "lite/core/program.h"
25
#include "lite/fluid/float16.h"
Y
Yan Chunwei 已提交
26

27 28 29 30 31 32
#ifdef LITE_WITH_OPENCL
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/kernels/opencl/image_helper.h"
#endif

Y
Yan Chunwei 已提交
33 34 35 36
namespace paddle {
namespace lite {
namespace profile {

T
TianXiaogang 已提交
37
template <typename dtype>
38
static bool write_tensorfile(const Tensor* tensor, const std::string& locate) {
T
TianXiaogang 已提交
39
  if (locate.find('/') != std::string::npos) {
40
    return false;
T
TianXiaogang 已提交
41 42 43 44
  }
  FILE* fp = fopen(locate.c_str(), "w");
  if (fp == nullptr) {
    LOG(ERROR) << "file open field " << locate;
45
    return false;
T
TianXiaogang 已提交
46 47 48 49 50 51 52
  } else {
    const dtype* data = tensor->data<dtype>();
    for (int i = 0; i < tensor->numel(); ++i) {
      fprintf(fp, "[%d] %f \n", i, static_cast<float>(data[i]));
    }
  }
  fclose(fp);
53
  return true;
T
TianXiaogang 已提交
54 55
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
static bool write_precision_summary_tofile(const std::string& string,
                                           const std::string& log_dir = "") {
  if (log_dir == "") {
    LOG(INFO) << "The `log_dir` of precision summary file is not set. log_dir:"
              << log_dir;
    return false;
  }
  FILE* fp = fopen(log_dir.c_str(), "a");
  if (fp == nullptr) {
    LOG(INFO) << "Open precision summary file:" << log_dir << "failed.";
    return false;
  } else {
    fprintf(fp, "%s\n", string.c_str());
  }
  fclose(fp);
  return true;
}

Y
Yan Chunwei 已提交
74 75
class PrecisionProfiler {
 public:
76 77 78 79 80 81 82 83 84 85 86 87 88
  // TODO(ysh329): need to remove `explicit PrecisionProfiler`
  // keep this method only for arm/math/conditional
  explicit PrecisionProfiler(const Instruction* inst) {
    std::string inst_precison_str = GetInstPrecision(inst);
  }

  PrecisionProfiler() {}

  std::string GetSummaryHeader() {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
89
    ss << "\n\n========================================= "
90 91 92 93
       << "Detailed Precision Profiler Summary "
       << "=========================================" << std::endl;
    ss << setw(45) << left << "operator:(kernel_info)"
       << " " << setw(70) << left << "output_tensor_name:(tensor_info)"
94 95 96 97
       << " " << setw(15) << left << "dims"
       << " " << setw(15) << left << "mean"
       << " " << setw(15) << left << "std_deviation"
       << " " << setw(15) << left << "ave_grow_rate*" << std::endl;
98

99 100 101 102 103 104 105
    // write to file with path: `log_dir`
    if (log_dir_ != "") {
      FILE* fp = fopen(log_dir_.c_str(), "a");
      std::string header_str{ss.str()};
      fprintf(fp, "%s\n", header_str.c_str());
      fclose(fp);
    }
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    return ss.str();
  }

  template <typename T>
  double compute_mean(const T* in, const size_t length) {
    double sum = 0.;
    for (size_t i = 0; i < length; ++i) {
      sum += in[i];
    }
    return sum / length;
  }

  template <typename T>
  double compute_standard_deviation(const T* in,
                                    const size_t length,
                                    bool has_mean = false,
                                    double mean = 10000) {
    if (!has_mean) {
      mean = compute_mean<T>(in, length);
    }

    double variance = 0.;
    for (size_t i = 0; i < length; ++i) {
      variance += pow((in[i] - mean), 2);
    }
    variance /= length;
    return sqrt(variance);
  }

135 136 137 138 139 140 141 142 143 144 145
  template <typename T>
  double compute_average_grow_rate(const T* in, const size_t length) {
    const double eps = 1e-5;
    double ave_grow_rate = 0.0f;
    for (size_t i = 1; i < length; ++i) {
      ave_grow_rate += (in[i] - in[i - 1]) / (in[i - 1] + eps);
    }
    ave_grow_rate /= length;
    return ave_grow_rate;
  }

146 147 148 149 150 151 152 153 154 155 156 157 158 159
  // check if output tensor unused
  bool is_unused(const Tensor* in) {
    if (!in->data<int8_t>()) {
      return true;
    }
    return false;
  }

  void compute_tensor_precision_info(const Tensor* in,
                                     TargetType target_type,
                                     PrecisionType precision_type,
                                     DataLayoutType layout_type,
                                     double* mean,
                                     double* std_dev,
160 161 162
                                     double* ave_grow_rate,
                                     std::string name = "inst",
                                     bool write_result_to_file = false) {
163 164 165 166 167 168 169 170
    std::string unsupported_error_log =
        "Unsupported precision profile for kernel registered on" +
        TargetToStr(target_type) + "/" + PrecisionToStr(precision_type) + "/" +
        DataLayoutToStr(layout_type);

    if (target_type == TARGET(kARM) || target_type == TARGET(kHost) ||
        target_type == TARGET(kX86)) {
      switch (precision_type) {
Y
Yan Chunwei 已提交
171 172
        case PRECISION(kFloat): {
          auto ptr = in->data<float>();
173 174 175
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
176 177
          *ave_grow_rate = compute_average_grow_rate<float>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
178
          return;
T
TianXiaogang 已提交
179 180 181
        }
        case PRECISION(kAny): {
          auto ptr = in->data<float>();
182 183 184
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
185 186
          *ave_grow_rate = compute_average_grow_rate<float>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
187
          return;
Y
Yan Chunwei 已提交
188 189 190
        }
        case PRECISION(kInt8): {
          auto ptr = in->data<int8_t>();
191 192 193
          *mean = compute_mean<int8_t>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<int8_t>(ptr, in->numel(), true, *mean);
194 195
          *ave_grow_rate = compute_average_grow_rate<int8_t>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<int8_t>(in, name);
196
          return;
Y
Yan Chunwei 已提交
197 198 199
        }
        case PRECISION(kInt32): {
          auto ptr = in->data<int32_t>();
200 201 202
          *mean = compute_mean<int32_t>(ptr, in->numel());
          *std_dev = compute_standard_deviation<int32_t>(
              ptr, in->numel(), true, *mean);
203 204
          *ave_grow_rate = compute_average_grow_rate<int32_t>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<int32_t>(in, name);
205 206
          return;
        }
207 208 209 210 211 212 213
        case PRECISION(kInt64): {
          auto ptr = in->data<int64_t>();
          *mean = compute_mean<int64_t>(ptr, in->numel());
          *std_dev = compute_standard_deviation<int64_t>(
              ptr, in->numel(), true, *mean);
          return;
        }
214 215 216
        default:
          *mean = -333333333333;
          *std_dev = -33333333333;
217
          *ave_grow_rate = -33333333333;
218 219 220 221 222
          LOG(ERROR) << unsupported_error_log;
          return;
      }
#ifdef LITE_WITH_OPENCL
    } else if (target_type == TARGET(kOpenCL)) {
223
      CLRuntime::Global()->command_queue().finish();
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
      switch (layout_type) {
        case DATALAYOUT(kImageDefault): {
          paddle::lite::CLImageConverterDefault default_convertor;
          auto image_shape = default_convertor.InitImageDimInfoWith(in->dims());
          size_t im_w = image_shape[0];
          size_t im_h = image_shape[1];
          VLOG(1) << "image shape(W,H) of " << name << ": " << im_w << " "
                  << im_h;
          std::vector<uint16_t> in_data_v(im_w * im_h * 4);
          std::vector<float> real_out_v(in->numel());
          const size_t cl_image2d_row_pitch{0};
          const size_t cl_image2d_slice_pitch{0};
          TargetWrapperCL::ImgcpySync(in_data_v.data(),
                                      in->data<uint16_t, cl::Image2D>(),
                                      im_w,
                                      im_h,
                                      cl_image2d_row_pitch,
                                      cl_image2d_slice_pitch,
                                      IoDirection::DtoH);
          default_convertor.ImageToNCHW(
              in_data_v.data(), real_out_v.data(), image_shape, in->dims());
          CHECK(real_out_v.size() == in->numel());
          *mean = compute_mean<float>(real_out_v.data(), real_out_v.size());
          *std_dev = compute_standard_deviation<float>(
              real_out_v.data(), in->numel(), true, *mean);
249 250 251
          *ave_grow_rate = compute_average_grow_rate<float>(real_out_v.data(),
                                                            real_out_v.size());
          write_result_to_file&& write_tensorfile<float>(in, name);
252 253 254 255 256 257 258 259 260 261 262 263
          return;
        }
        case DATALAYOUT(kNCHW): {
          std::vector<float> in_data_v(in->numel(), 0);
          TargetWrapperCL::MemcpySync(in_data_v.data(),
                                      in->data<float>(),
                                      in->numel() * sizeof(float),
                                      IoDirection::DtoH);
          VLOG(1) << name << ":" << in->numel();
          *mean = compute_mean<float>(in_data_v.data(), in->numel());
          *std_dev = compute_standard_deviation<float>(
              in_data_v.data(), in->numel(), true, *mean);
264 265 266
          *ave_grow_rate =
              compute_average_grow_rate<float>(in_data_v.data(), in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
267
          return;
Y
Yan Chunwei 已提交
268 269
        }
        default:
270 271
          *mean = -222222222222;
          *std_dev = -22222222222;
272
          *ave_grow_rate = -22222222222;
273 274
          LOG(ERROR) << unsupported_error_log;
          return;
Y
Yan Chunwei 已提交
275
      }
276 277 278 279
#endif
    } else {
      *mean = -111111111111;
      *std_dev = -11111111111;
280
      *ave_grow_rate = -11111111111;
281 282 283 284 285 286 287 288 289 290
      LOG(ERROR) << unsupported_error_log;
      return;
    }
  }

  std::string GetInstPrecision(const Instruction* inst = nullptr) {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
291
    bool write_result_to_file = false;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

    VLOG(1) << ">> Running kernel: " << inst->op()->op_info()->Repr()
            << " registered on " << TargetToStr(inst->kernel()->target()) << "/"
            << PrecisionToStr(inst->kernel()->precision()) << "/"
            << DataLayoutToStr(inst->kernel()->layout());

    std::string kernel_repr = inst->op()->op_info()->Repr();
    std::string kernel_place = TargetToStr(inst->kernel()->target()) + "/" +
                               PrecisionToStr(inst->kernel()->precision()) +
                               "/" + DataLayoutToStr(inst->kernel()->layout());
    std::string op_name = inst->op()->op_info()->Type();

    if (inst->op()->op_info()->Type() != "fetch") {
      auto op = const_cast<lite::OpLite*>(inst->op());
      auto kernel = inst->kernel();
Y
Yan Chunwei 已提交
307 308 309 310 311 312
      auto op_scope = op->scope();
      auto out_names = op->op_info()->output_names();
      for (auto& out_name : out_names) {
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
T
TianXiaogang 已提交
313

Y
Yan Chunwei 已提交
314
        if (type->IsTensor()) {
315 316 317 318
          const Tensor* tout =
              op_scope->FindVar(out_name)->GetMutable<Tensor>();
          double mean = -999999;
          double std_dev = -100000;
319
          double ave_grow_rate = 99999;
320 321
          std::string mean_str{"unused"};
          std::string std_dev_str{"unused"};
322
          std::string ave_grow_rate_str{"unused"};
323 324 325 326 327 328 329 330

          if (!is_unused(tout)) {
            compute_tensor_precision_info(tout,
                                          type->target(),
                                          type->precision(),
                                          type->layout(),
                                          &mean,
                                          &std_dev,
331 332 333 334 335 336
                                          &ave_grow_rate,
                                          out_name,
                                          write_result_to_file);
            mean_str = std::to_string(mean);
            std_dev_str = std::to_string(std_dev);
            ave_grow_rate_str = std::to_string(ave_grow_rate);
337 338 339 340 341 342 343 344 345 346
          }
          std::string kernel_info = op_name + ":" + kernel_place;
          std::string output_arg_info = out_name + ":" +
                                        TargetToStr(type->target()) + "/" +
                                        PrecisionToStr(type->precision()) +
                                        "/" + DataLayoutToStr(type->layout());

          ss << setw(45) << left << kernel_info << " " << setw(70) << left
             << output_arg_info << " " << setw(15) << left << tout->dims()
             << " " << setw(15) << left << mean_str << " " << setw(15) << left
347 348
             << std_dev_str << " " << setw(15) << left << ave_grow_rate_str
             << std::endl;
Y
Yan Chunwei 已提交
349
        } else if (type->IsTensorList()) {
350
          auto touts =
Y
Yan Chunwei 已提交
351
              op_scope->FindVar(out_name)->GetMutable<std::vector<Tensor>>();
352 353 354 355
          for (auto t : *touts) {
            const Tensor* tout = &t;
            double mean = -999999;
            double std_dev = -100000;
356
            double ave_grow_rate = 99999;
357 358
            std::string mean_str{"unused"};
            std::string std_dev_str{"unused"};
359
            std::string ave_grow_rate_str{"unused"};
360 361 362 363 364 365 366 367

            if (!is_unused(tout)) {
              compute_tensor_precision_info(tout,
                                            type->target(),
                                            type->precision(),
                                            type->layout(),
                                            &mean,
                                            &std_dev,
368 369 370 371 372 373
                                            &ave_grow_rate,
                                            out_name,
                                            write_result_to_file);
              mean_str = std::to_string(mean);
              std_dev_str = std::to_string(std_dev);
              ave_grow_rate_str = std::to_string(ave_grow_rate);
374 375 376 377 378 379 380 381 382 383
            }
            std::string kernel_info = op_name + ":" + kernel_place;
            std::string output_arg_info = out_name + ":" +
                                          TargetToStr(type->target()) + "/" +
                                          PrecisionToStr(type->precision()) +
                                          "/" + DataLayoutToStr(type->layout());

            ss << setw(45) << left << kernel_info << " " << setw(70) << left
               << output_arg_info << " " << setw(15) << left << tout->dims()
               << " " << setw(15) << left << mean_str << " " << setw(15) << left
384 385
               << std_dev_str << " " << setw(15) << left << ave_grow_rate_str
               << std::endl;
Y
Yan Chunwei 已提交
386 387 388 389
          }
        }
      }
    }
390
    write_precision_summary_tofile(ss.str(), log_dir_);
391
    return ss.str();
Y
Yan Chunwei 已提交
392
  }
393 394 395

 private:
  std::string log_dir_{"/storage/emulated/0/precision.log"};
Y
Yan Chunwei 已提交
396 397 398 399 400 401
};

}  // namespace profile
}  // namespace lite
}  // namespace paddle

402 403
// TODO(ysh329): need to remove.
// keep this method only for arm/math/conditional_block_compute
Y
Yan Chunwei 已提交
404 405
#define LITE_PRECISION_PROFILE(inst) \
  { auto a = paddle::lite::profile::PrecisionProfiler(&inst); }