precision_profiler.h 14.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*
 * This file implements BasicProfile, a profiler that helps to profile the basic
 * CPU execution. It can display the min, max, average lantency of the execution
 * of each kernel.
 */
#pragma once
#include <string>
#include <vector>
#include "lite/core/program.h"

25 26 27 28 29 30
#ifdef LITE_WITH_OPENCL
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/kernels/opencl/image_helper.h"
#endif

Y
Yan Chunwei 已提交
31 32 33 34
namespace paddle {
namespace lite {
namespace profile {

T
TianXiaogang 已提交
35
template <typename dtype>
36
static bool write_tensorfile(const Tensor* tensor, const std::string& locate) {
T
TianXiaogang 已提交
37
  if (locate.find('/') != std::string::npos) {
38
    return false;
T
TianXiaogang 已提交
39 40 41 42
  }
  FILE* fp = fopen(locate.c_str(), "w");
  if (fp == nullptr) {
    LOG(ERROR) << "file open field " << locate;
43
    return false;
T
TianXiaogang 已提交
44 45 46 47 48 49 50
  } else {
    const dtype* data = tensor->data<dtype>();
    for (int i = 0; i < tensor->numel(); ++i) {
      fprintf(fp, "[%d] %f \n", i, static_cast<float>(data[i]));
    }
  }
  fclose(fp);
51
  return true;
T
TianXiaogang 已提交
52 53
}

Y
Yan Chunwei 已提交
54 55
class PrecisionProfiler {
 public:
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  // TODO(ysh329): need to remove `explicit PrecisionProfiler`
  // keep this method only for arm/math/conditional
  explicit PrecisionProfiler(const Instruction* inst) {
    std::string inst_precison_str = GetInstPrecision(inst);
  }

  PrecisionProfiler() {}

  std::string GetSummaryHeader() {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
    ss << "========================================= "
       << "Detailed Precision Profiler Summary "
       << "=========================================" << std::endl;
    ss << setw(45) << left << "operator:(kernel_info)"
       << " " << setw(70) << left << "output_tensor_name:(tensor_info)"
74 75 76 77
       << " " << setw(15) << left << "dims"
       << " " << setw(15) << left << "mean"
       << " " << setw(15) << left << "std_deviation"
       << " " << setw(15) << left << "ave_grow_rate*" << std::endl;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

    return ss.str();
  }

  template <typename T>
  double compute_mean(const T* in, const size_t length) {
    double sum = 0.;
    for (size_t i = 0; i < length; ++i) {
      sum += in[i];
    }
    return sum / length;
  }

  template <typename T>
  double compute_standard_deviation(const T* in,
                                    const size_t length,
                                    bool has_mean = false,
                                    double mean = 10000) {
    if (!has_mean) {
      mean = compute_mean<T>(in, length);
    }

    double variance = 0.;
    for (size_t i = 0; i < length; ++i) {
      variance += pow((in[i] - mean), 2);
    }
    variance /= length;
    return sqrt(variance);
  }

108 109 110 111 112 113 114 115 116 117 118
  template <typename T>
  double compute_average_grow_rate(const T* in, const size_t length) {
    const double eps = 1e-5;
    double ave_grow_rate = 0.0f;
    for (size_t i = 1; i < length; ++i) {
      ave_grow_rate += (in[i] - in[i - 1]) / (in[i - 1] + eps);
    }
    ave_grow_rate /= length;
    return ave_grow_rate;
  }

119 120 121 122 123 124 125 126 127 128 129 130 131 132
  // check if output tensor unused
  bool is_unused(const Tensor* in) {
    if (!in->data<int8_t>()) {
      return true;
    }
    return false;
  }

  void compute_tensor_precision_info(const Tensor* in,
                                     TargetType target_type,
                                     PrecisionType precision_type,
                                     DataLayoutType layout_type,
                                     double* mean,
                                     double* std_dev,
133 134 135
                                     double* ave_grow_rate,
                                     std::string name = "inst",
                                     bool write_result_to_file = false) {
136 137 138 139 140 141 142 143
    std::string unsupported_error_log =
        "Unsupported precision profile for kernel registered on" +
        TargetToStr(target_type) + "/" + PrecisionToStr(precision_type) + "/" +
        DataLayoutToStr(layout_type);

    if (target_type == TARGET(kARM) || target_type == TARGET(kHost) ||
        target_type == TARGET(kX86)) {
      switch (precision_type) {
Y
Yan Chunwei 已提交
144 145
        case PRECISION(kFloat): {
          auto ptr = in->data<float>();
146 147 148
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
149 150
          *ave_grow_rate = compute_average_grow_rate<float>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
151
          return;
T
TianXiaogang 已提交
152 153 154
        }
        case PRECISION(kAny): {
          auto ptr = in->data<float>();
155 156 157
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
158 159
          *ave_grow_rate = compute_average_grow_rate<float>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
160
          return;
Y
Yan Chunwei 已提交
161 162 163
        }
        case PRECISION(kInt8): {
          auto ptr = in->data<int8_t>();
164 165 166
          *mean = compute_mean<int8_t>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<int8_t>(ptr, in->numel(), true, *mean);
167 168
          *ave_grow_rate = compute_average_grow_rate<int8_t>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<int8_t>(in, name);
169
          return;
Y
Yan Chunwei 已提交
170 171 172
        }
        case PRECISION(kInt32): {
          auto ptr = in->data<int32_t>();
173 174 175
          *mean = compute_mean<int32_t>(ptr, in->numel());
          *std_dev = compute_standard_deviation<int32_t>(
              ptr, in->numel(), true, *mean);
176 177
          *ave_grow_rate = compute_average_grow_rate<int32_t>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<int32_t>(in, name);
178 179 180 181 182
          return;
        }
        default:
          *mean = -333333333333;
          *std_dev = -33333333333;
183
          *ave_grow_rate = -33333333333;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
          LOG(ERROR) << unsupported_error_log;
          return;
      }
#ifdef LITE_WITH_OPENCL
    } else if (target_type == TARGET(kOpenCL)) {
      switch (layout_type) {
        case DATALAYOUT(kImageDefault): {
          paddle::lite::CLImageConverterDefault default_convertor;
          auto image_shape = default_convertor.InitImageDimInfoWith(in->dims());
          size_t im_w = image_shape[0];
          size_t im_h = image_shape[1];
          VLOG(1) << "image shape(W,H) of " << name << ": " << im_w << " "
                  << im_h;
          std::vector<uint16_t> in_data_v(im_w * im_h * 4);
          std::vector<float> real_out_v(in->numel());
          const size_t cl_image2d_row_pitch{0};
          const size_t cl_image2d_slice_pitch{0};
          TargetWrapperCL::ImgcpySync(in_data_v.data(),
                                      in->data<uint16_t, cl::Image2D>(),
                                      im_w,
                                      im_h,
                                      cl_image2d_row_pitch,
                                      cl_image2d_slice_pitch,
                                      IoDirection::DtoH);
          default_convertor.ImageToNCHW(
              in_data_v.data(), real_out_v.data(), image_shape, in->dims());
          CHECK(real_out_v.size() == in->numel());
          *mean = compute_mean<float>(real_out_v.data(), real_out_v.size());
          *std_dev = compute_standard_deviation<float>(
              real_out_v.data(), in->numel(), true, *mean);
214 215 216
          *ave_grow_rate = compute_average_grow_rate<float>(real_out_v.data(),
                                                            real_out_v.size());
          write_result_to_file&& write_tensorfile<float>(in, name);
217 218 219 220 221 222 223 224 225 226 227 228
          return;
        }
        case DATALAYOUT(kNCHW): {
          std::vector<float> in_data_v(in->numel(), 0);
          TargetWrapperCL::MemcpySync(in_data_v.data(),
                                      in->data<float>(),
                                      in->numel() * sizeof(float),
                                      IoDirection::DtoH);
          VLOG(1) << name << ":" << in->numel();
          *mean = compute_mean<float>(in_data_v.data(), in->numel());
          *std_dev = compute_standard_deviation<float>(
              in_data_v.data(), in->numel(), true, *mean);
229 230 231
          *ave_grow_rate =
              compute_average_grow_rate<float>(in_data_v.data(), in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
232
          return;
Y
Yan Chunwei 已提交
233 234
        }
        default:
235 236
          *mean = -222222222222;
          *std_dev = -22222222222;
237
          *ave_grow_rate = -22222222222;
238 239
          LOG(ERROR) << unsupported_error_log;
          return;
Y
Yan Chunwei 已提交
240
      }
241 242 243 244
#endif
    } else {
      *mean = -111111111111;
      *std_dev = -11111111111;
245
      *ave_grow_rate = -11111111111;
246 247 248 249 250 251 252 253 254 255
      LOG(ERROR) << unsupported_error_log;
      return;
    }
  }

  std::string GetInstPrecision(const Instruction* inst = nullptr) {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
256
    bool write_result_to_file = false;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

    VLOG(1) << ">> Running kernel: " << inst->op()->op_info()->Repr()
            << " registered on " << TargetToStr(inst->kernel()->target()) << "/"
            << PrecisionToStr(inst->kernel()->precision()) << "/"
            << DataLayoutToStr(inst->kernel()->layout());

    std::string kernel_repr = inst->op()->op_info()->Repr();
    std::string kernel_place = TargetToStr(inst->kernel()->target()) + "/" +
                               PrecisionToStr(inst->kernel()->precision()) +
                               "/" + DataLayoutToStr(inst->kernel()->layout());
    std::string op_name = inst->op()->op_info()->Type();

    if (inst->op()->op_info()->Type() != "fetch") {
      auto op = const_cast<lite::OpLite*>(inst->op());
      auto kernel = inst->kernel();
Y
Yan Chunwei 已提交
272 273 274 275 276 277
      auto op_scope = op->scope();
      auto out_names = op->op_info()->output_names();
      for (auto& out_name : out_names) {
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
T
TianXiaogang 已提交
278

Y
Yan Chunwei 已提交
279
        if (type->IsTensor()) {
280 281 282 283
          const Tensor* tout =
              op_scope->FindVar(out_name)->GetMutable<Tensor>();
          double mean = -999999;
          double std_dev = -100000;
284
          double ave_grow_rate = 99999;
285 286
          std::string mean_str{"unused"};
          std::string std_dev_str{"unused"};
287
          std::string ave_grow_rate_str{"unused"};
288 289 290 291 292 293 294 295

          if (!is_unused(tout)) {
            compute_tensor_precision_info(tout,
                                          type->target(),
                                          type->precision(),
                                          type->layout(),
                                          &mean,
                                          &std_dev,
296 297 298 299 300 301
                                          &ave_grow_rate,
                                          out_name,
                                          write_result_to_file);
            mean_str = std::to_string(mean);
            std_dev_str = std::to_string(std_dev);
            ave_grow_rate_str = std::to_string(ave_grow_rate);
302 303 304 305 306 307 308 309 310 311
          }
          std::string kernel_info = op_name + ":" + kernel_place;
          std::string output_arg_info = out_name + ":" +
                                        TargetToStr(type->target()) + "/" +
                                        PrecisionToStr(type->precision()) +
                                        "/" + DataLayoutToStr(type->layout());

          ss << setw(45) << left << kernel_info << " " << setw(70) << left
             << output_arg_info << " " << setw(15) << left << tout->dims()
             << " " << setw(15) << left << mean_str << " " << setw(15) << left
312 313
             << std_dev_str << " " << setw(15) << left << ave_grow_rate_str
             << std::endl;
Y
Yan Chunwei 已提交
314
        } else if (type->IsTensorList()) {
315
          auto touts =
Y
Yan Chunwei 已提交
316
              op_scope->FindVar(out_name)->GetMutable<std::vector<Tensor>>();
317 318 319 320
          for (auto t : *touts) {
            const Tensor* tout = &t;
            double mean = -999999;
            double std_dev = -100000;
321
            double ave_grow_rate = 99999;
322 323
            std::string mean_str{"unused"};
            std::string std_dev_str{"unused"};
324
            std::string ave_grow_rate_str{"unused"};
325 326 327 328 329 330 331 332

            if (!is_unused(tout)) {
              compute_tensor_precision_info(tout,
                                            type->target(),
                                            type->precision(),
                                            type->layout(),
                                            &mean,
                                            &std_dev,
333 334 335 336 337 338
                                            &ave_grow_rate,
                                            out_name,
                                            write_result_to_file);
              mean_str = std::to_string(mean);
              std_dev_str = std::to_string(std_dev);
              ave_grow_rate_str = std::to_string(ave_grow_rate);
339 340 341 342 343 344 345 346 347 348
            }
            std::string kernel_info = op_name + ":" + kernel_place;
            std::string output_arg_info = out_name + ":" +
                                          TargetToStr(type->target()) + "/" +
                                          PrecisionToStr(type->precision()) +
                                          "/" + DataLayoutToStr(type->layout());

            ss << setw(45) << left << kernel_info << " " << setw(70) << left
               << output_arg_info << " " << setw(15) << left << tout->dims()
               << " " << setw(15) << left << mean_str << " " << setw(15) << left
349 350
               << std_dev_str << " " << setw(15) << left << ave_grow_rate_str
               << std::endl;
Y
Yan Chunwei 已提交
351 352 353 354
          }
        }
      }
    }
355
    return ss.str();
Y
Yan Chunwei 已提交
356 357 358 359 360 361 362
  }
};

}  // namespace profile
}  // namespace lite
}  // namespace paddle

363 364
// TODO(ysh329): need to remove.
// keep this method only for arm/math/conditional_block_compute
Y
Yan Chunwei 已提交
365 366
#define LITE_PRECISION_PROFILE(inst) \
  { auto a = paddle::lite::profile::PrecisionProfiler(&inst); }