precision_profiler.h 12.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*
 * This file implements BasicProfile, a profiler that helps to profile the basic
 * CPU execution. It can display the min, max, average lantency of the execution
 * of each kernel.
 */
#pragma once
#include <string>
#include <vector>
#include "lite/core/program.h"

25 26 27 28 29 30
#ifdef LITE_WITH_OPENCL
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/kernels/opencl/image_helper.h"
#endif

Y
Yan Chunwei 已提交
31 32 33 34
namespace paddle {
namespace lite {
namespace profile {

T
TianXiaogang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename dtype>
static void write_tensorfile(const Tensor* tensor, const std::string& locate) {
  if (locate.find('/') != std::string::npos) {
    return;
  }
  FILE* fp = fopen(locate.c_str(), "w");
  if (fp == nullptr) {
    LOG(ERROR) << "file open field " << locate;
  } else {
    const dtype* data = tensor->data<dtype>();
    for (int i = 0; i < tensor->numel(); ++i) {
      fprintf(fp, "[%d] %f \n", i, static_cast<float>(data[i]));
    }
  }
  fclose(fp);
}

Y
Yan Chunwei 已提交
52 53
class PrecisionProfiler {
 public:
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  // TODO(ysh329): need to remove `explicit PrecisionProfiler`
  // keep this method only for arm/math/conditional
  explicit PrecisionProfiler(const Instruction* inst) {
    std::string inst_precison_str = GetInstPrecision(inst);
  }

  PrecisionProfiler() {}

  std::string GetSummaryHeader() {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
    ss << "========================================= "
       << "Detailed Precision Profiler Summary "
       << "=========================================" << std::endl;
    ss << setw(45) << left << "operator:(kernel_info)"
       << " " << setw(70) << left << "output_tensor_name:(tensor_info)"
       << " " << setw(15) << left << "tensor_dims"
       << " " << setw(15) << left << "tensor_mean"
       << " " << setw(15) << left << "tensor_standard_deviation" << std::endl;

    return ss.str();
  }

  template <typename T>
  double compute_mean(const T* in, const size_t length) {
    double sum = 0.;
    for (size_t i = 0; i < length; ++i) {
      sum += in[i];
    }
    return sum / length;
  }

  template <typename T>
  double compute_standard_deviation(const T* in,
                                    const size_t length,
                                    bool has_mean = false,
                                    double mean = 10000) {
    if (!has_mean) {
      mean = compute_mean<T>(in, length);
    }

    double variance = 0.;
    for (size_t i = 0; i < length; ++i) {
      variance += pow((in[i] - mean), 2);
    }
    variance /= length;
    return sqrt(variance);
  }

  // check if output tensor unused
  bool is_unused(const Tensor* in) {
    if (!in->data<int8_t>()) {
      return true;
    }
    return false;
  }

  void compute_tensor_precision_info(const Tensor* in,
                                     TargetType target_type,
                                     PrecisionType precision_type,
                                     DataLayoutType layout_type,
                                     double* mean,
                                     double* std_dev,
                                     std::string name = "inst") {
    std::string unsupported_error_log =
        "Unsupported precision profile for kernel registered on" +
        TargetToStr(target_type) + "/" + PrecisionToStr(precision_type) + "/" +
        DataLayoutToStr(layout_type);

    if (target_type == TARGET(kARM) || target_type == TARGET(kHost) ||
        target_type == TARGET(kX86)) {
      switch (precision_type) {
Y
Yan Chunwei 已提交
128 129
        case PRECISION(kFloat): {
          auto ptr = in->data<float>();
T
TianXiaogang 已提交
130
          // write_tensorfile<float>(in, name);
131 132 133 134
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
          return;
T
TianXiaogang 已提交
135 136 137 138
        }
        case PRECISION(kAny): {
          auto ptr = in->data<float>();
          // write_tensorfile<float>(in, name);
139 140 141 142
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
          return;
Y
Yan Chunwei 已提交
143 144 145
        }
        case PRECISION(kInt8): {
          auto ptr = in->data<int8_t>();
T
TianXiaogang 已提交
146
          // write_tensorfile<int8_t>(in, name);
147 148 149 150
          *mean = compute_mean<int8_t>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<int8_t>(ptr, in->numel(), true, *mean);
          return;
Y
Yan Chunwei 已提交
151 152 153
        }
        case PRECISION(kInt32): {
          auto ptr = in->data<int32_t>();
T
TianXiaogang 已提交
154
          // write_tensorfile<int32_t>(in, name);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
          *mean = compute_mean<int32_t>(ptr, in->numel());
          *std_dev = compute_standard_deviation<int32_t>(
              ptr, in->numel(), true, *mean);
          return;
        }
        default:
          *mean = -333333333333;
          *std_dev = -33333333333;
          LOG(ERROR) << unsupported_error_log;
          return;
      }
#ifdef LITE_WITH_OPENCL
    } else if (target_type == TARGET(kOpenCL)) {
      switch (layout_type) {
        case DATALAYOUT(kImageDefault): {
          paddle::lite::CLImageConverterDefault default_convertor;
          auto image_shape = default_convertor.InitImageDimInfoWith(in->dims());
          size_t im_w = image_shape[0];
          size_t im_h = image_shape[1];
          VLOG(1) << "image shape(W,H) of " << name << ": " << im_w << " "
                  << im_h;
          std::vector<uint16_t> in_data_v(im_w * im_h * 4);
          std::vector<float> real_out_v(in->numel());
          const size_t cl_image2d_row_pitch{0};
          const size_t cl_image2d_slice_pitch{0};
          TargetWrapperCL::ImgcpySync(in_data_v.data(),
                                      in->data<uint16_t, cl::Image2D>(),
                                      im_w,
                                      im_h,
                                      cl_image2d_row_pitch,
                                      cl_image2d_slice_pitch,
                                      IoDirection::DtoH);
          default_convertor.ImageToNCHW(
              in_data_v.data(), real_out_v.data(), image_shape, in->dims());
          // write_tensorfile<float>(in, name);
          CHECK(real_out_v.size() == in->numel());
          *mean = compute_mean<float>(real_out_v.data(), real_out_v.size());
          *std_dev = compute_standard_deviation<float>(
              real_out_v.data(), in->numel(), true, *mean);
          return;
        }
        case DATALAYOUT(kNCHW): {
          std::vector<float> in_data_v(in->numel(), 0);
          TargetWrapperCL::MemcpySync(in_data_v.data(),
                                      in->data<float>(),
                                      in->numel() * sizeof(float),
                                      IoDirection::DtoH);
          VLOG(1) << name << ":" << in->numel();
          *mean = compute_mean<float>(in_data_v.data(), in->numel());
          *std_dev = compute_standard_deviation<float>(
              in_data_v.data(), in->numel(), true, *mean);
          return;
Y
Yan Chunwei 已提交
207 208
        }
        default:
209 210 211 212
          *mean = -222222222222;
          *std_dev = -22222222222;
          LOG(ERROR) << unsupported_error_log;
          return;
Y
Yan Chunwei 已提交
213
      }
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#endif
    } else {
      *mean = -111111111111;
      *std_dev = -11111111111;
      LOG(ERROR) << unsupported_error_log;
      return;
    }
  }

  std::string GetInstPrecision(const Instruction* inst = nullptr) {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;

    VLOG(1) << ">> Running kernel: " << inst->op()->op_info()->Repr()
            << " registered on " << TargetToStr(inst->kernel()->target()) << "/"
            << PrecisionToStr(inst->kernel()->precision()) << "/"
            << DataLayoutToStr(inst->kernel()->layout());

    std::string kernel_repr = inst->op()->op_info()->Repr();
    std::string kernel_place = TargetToStr(inst->kernel()->target()) + "/" +
                               PrecisionToStr(inst->kernel()->precision()) +
                               "/" + DataLayoutToStr(inst->kernel()->layout());
    std::string op_name = inst->op()->op_info()->Type();

    if (inst->op()->op_info()->Type() != "fetch") {
      auto op = const_cast<lite::OpLite*>(inst->op());
      auto kernel = inst->kernel();
Y
Yan Chunwei 已提交
243 244 245 246 247 248
      auto op_scope = op->scope();
      auto out_names = op->op_info()->output_names();
      for (auto& out_name : out_names) {
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
T
TianXiaogang 已提交
249

Y
Yan Chunwei 已提交
250
        if (type->IsTensor()) {
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
          const Tensor* tout =
              op_scope->FindVar(out_name)->GetMutable<Tensor>();
          double mean = -999999;
          double std_dev = -100000;
          std::string mean_str{"unused"};
          std::string std_dev_str{"unused"};

          if (!is_unused(tout)) {
            compute_tensor_precision_info(tout,
                                          type->target(),
                                          type->precision(),
                                          type->layout(),
                                          &mean,
                                          &std_dev,
                                          out_name);
266 267
            mean_str = paddle::lite::to_string(mean);
            std_dev_str = paddle::lite::to_string(std_dev);
268 269 270 271 272 273 274 275 276 277 278
          }
          std::string kernel_info = op_name + ":" + kernel_place;
          std::string output_arg_info = out_name + ":" +
                                        TargetToStr(type->target()) + "/" +
                                        PrecisionToStr(type->precision()) +
                                        "/" + DataLayoutToStr(type->layout());

          ss << setw(45) << left << kernel_info << " " << setw(70) << left
             << output_arg_info << " " << setw(15) << left << tout->dims()
             << " " << setw(15) << left << mean_str << " " << setw(15) << left
             << std_dev_str << std::endl;
Y
Yan Chunwei 已提交
279
        } else if (type->IsTensorList()) {
280
          auto touts =
Y
Yan Chunwei 已提交
281
              op_scope->FindVar(out_name)->GetMutable<std::vector<Tensor>>();
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
          for (auto t : *touts) {
            const Tensor* tout = &t;
            double mean = -999999;
            double std_dev = -100000;
            std::string mean_str{"unused"};
            std::string std_dev_str{"unused"};

            if (!is_unused(tout)) {
              compute_tensor_precision_info(tout,
                                            type->target(),
                                            type->precision(),
                                            type->layout(),
                                            &mean,
                                            &std_dev,
                                            out_name);
297 298
              mean_str = paddle::lite::to_string(mean);
              std_dev_str = paddle::lite::to_string(std_dev);
299 300 301 302 303 304 305 306 307 308 309
            }
            std::string kernel_info = op_name + ":" + kernel_place;
            std::string output_arg_info = out_name + ":" +
                                          TargetToStr(type->target()) + "/" +
                                          PrecisionToStr(type->precision()) +
                                          "/" + DataLayoutToStr(type->layout());

            ss << setw(45) << left << kernel_info << " " << setw(70) << left
               << output_arg_info << " " << setw(15) << left << tout->dims()
               << " " << setw(15) << left << mean_str << " " << setw(15) << left
               << std_dev_str << std::endl;
Y
Yan Chunwei 已提交
310 311 312 313
          }
        }
      }
    }
314
    return ss.str();
Y
Yan Chunwei 已提交
315 316 317 318 319 320 321
  }
};

}  // namespace profile
}  // namespace lite
}  // namespace paddle

322 323
// TODO(ysh329): need to remove.
// keep this method only for arm/math/conditional_block_compute
Y
Yan Chunwei 已提交
324 325
#define LITE_PRECISION_PROFILE(inst) \
  { auto a = paddle::lite::profile::PrecisionProfiler(&inst); }