executor.cpp 31.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
21
#include "framework/context.h"
L
liuruilong 已提交
22
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
23 24
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
25
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
26 27 28 29
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
30
#include "memory/t_malloc.h"
H
hjchen2 已提交
31
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
32 33 34
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
35 36

namespace paddle_mobile {
37
namespace framework {
38

W
wangliu 已提交
39 40
#pragma mark - executor

41 42 43 44 45
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

46
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48 49 50
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
51
    : program_(program),
H
hjchen2 已提交
52 53
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55
      lod_mode_(lod_mode),
      config_(config) {
56 57
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
58
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
59
  variable_ptr->SetValue<int>(batch_size);
60 61

  program_desc_ =
Refine  
陈后江 已提交
62
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
63 64
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
65 66
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_CL)
  pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
67
#endif
68 69 70
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
71

72
  const auto &blocks = program_desc_->Blocks();
73 74 75 76 77 78 79 80
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
81
        op_desc->GetAttrMap(), program_.scope.get());
82 83 84 85
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
86
    }
87
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
88
  }
W
wangliu 已提交
89
  if (program_.combined) {
L
liuruilong 已提交
90 91 92 93
    InitCombineMemory();
  } else {
    InitMemory();
  }
94 95

  int count = 0;
96 97 98
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
99
  }
W
wangliu 已提交
100 101
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

129
template <typename T>
130
static void LoadMemInternal(void **data, LoDTensor *tensor,
131
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
132
  char **data_buf = reinterpret_cast<char **>(data);
133
  int64_t size = tensor->numel();
134
  T *tensor_data = tensor->mutable_data<T>();
135 136
  if (quant_uint8) {
    // should be moved into operator init function
137 138
    float min_value;
    float max_value;
139 140 141
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
142
    const float factor = (max_value - min_value) / 255.0;
143
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
144 145
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
146
    }
147
    *data_buf += size * sizeof(uint8_t);
148
  } else {
149 150
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
151
  }
152
}
W
wangliu 已提交
153

154 155 156 157
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
158
  char **data_buf = reinterpret_cast<char **>(data);
159
  // version
160
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
161
  *data_buf += sizeof(uint32_t);
162
  // lod information
H
hjchen2 已提交
163 164
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
165
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
166
  *data_buf += sizeof(uint64_t);
167 168 169 170

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
171
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
172
    *data_buf += sizeof(uint64_t);
173
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
174
    memory::Copy(tmp_dim.data(), *data_buf, size);
175
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
176
    *data_buf += size;
W
wangliu 已提交
177
  }
178
  // tensor version
179
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
180
  *data_buf += sizeof(uint32_t);
181
  // tensor desc size
182
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
183
  *data_buf += sizeof(int32_t);
184
  // skip tensor desc
Refine  
陈后江 已提交
185
  *data_buf += tensor_desc_size;
186

187 188
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
189 190
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
191
    case VARTYPE_TYPE_FP32:
192 193
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
194
      break;
195
    case VARTYPE_TYPE_INT8:
196
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
197
      break;
198
    case VARTYPE_TYPE_INT32:
199
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
200 201
      break;
    default:
202
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
203
  }
W
wangliu 已提交
204 205
}

206 207 208
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
209 210 211 212
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
213
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
214 215
          continue;
        }
H
hjchen2 已提交
216
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
217
        char *origin_data =
Refine  
陈后江 已提交
218
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
219
        char *data = origin_data;
H
update  
hjchen2 已提交
220
        auto tensor = var->template GetMutable<LoDTensor>();
221 222
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
223
      } else {
224
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
225
        varInputMemory(var_desc, var);
W
wangliu 已提交
226 227 228 229 230
      }
    }
  }
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

245 246
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
247
  char *origin_data = nullptr;
Refine  
陈后江 已提交
248
  bool self_alloc = false;
249
  if (program_.combined_params_buf && program_.combined_params_len) {
250 251
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
252
  } else {
Refine  
陈后江 已提交
253
    self_alloc = true;
Refine  
陈后江 已提交
254
    origin_data = ReadFileToBuff(program_.para_path);
255
  }
Refine  
陈后江 已提交
256 257
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
258
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
259 260 261 262
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
263
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
264 265
          continue;
        }
L
liuruilong 已提交
266 267

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
268
        auto tensor = var->template GetMutable<LoDTensor>();
269
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
270
      } else {
H
update  
hjchen2 已提交
271 272
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
273 274 275
      }
    }
  }
Refine  
陈后江 已提交
276
  if (self_alloc) {
277
    delete[] origin_data;
Refine  
陈后江 已提交
278 279
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
280
}
281

L
liuruilong 已提交
282
template <typename Device, typename T>
L
liuruilong 已提交
283
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
284 285 286 287 288 289
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
290
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
291 292 293 294 295
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
296 297 298 299
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
300
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
301 302 303
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
304 305 306 307 308 309 310 311 312 313
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

314 315
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
316
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
317
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
318
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
319
  tensor->init(type_id<float>().hash_code());
320 321
  return true;
#endif
H
update  
hjchen2 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
335
  }
H
update  
hjchen2 已提交
336
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
337
}
L
liuruilong 已提交
338

339 340 341 342 343
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
344
  }
345 346 347 348 349 350 351 352
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
353
  }
354
  return this->Predict();
W
wangliu 已提交
355
}
xiebaiyuan's avatar
xiebaiyuan 已提交
356

357 358 359
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
360 361 362 363 364 365 366
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
367
  Tensor feed_tensor(input, make_ddim(dims));
368
  SetInput(feed_tensor, input_name);
369 370
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
371 372
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
373 374 375 376 377 378
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
379

380 381 382
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
383
  int index = 0;
384
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
385
    index = feed_indices_.find(var_name)->second;
386
  }
H
hjchen2 已提交
387 388 389 390 391 392
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
393
}
xiebaiyuan's avatar
xiebaiyuan 已提交
394

395 396 397
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
398
  int index = 0;
399
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
400
    index = feed_indices_.find(var_name)->second;
401
  }
H
hjchen2 已提交
402 403 404 405 406 407 408
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
409 410 411 412 413
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
414 415 416 417 418 419 420 421 422
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
423

424 425 426 427 428 429 430
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
431
}
xiebaiyuan's avatar
xiebaiyuan 已提交
432

433 434
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
435 436 437
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
438 439 440 441
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
442
#ifdef PADDLE_MOBILE_PROFILE
443
  std::vector<ProfInfo> profile(ops_of_block0_.size());
444 445
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
446
#endif
447
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
448
#ifdef PADDLE_MOBILE_PROFILE
449 450
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
451
#endif
H
hjchen2 已提交
452
    DLOG << "run op: " << op_handler->Type();
453 454 455 456
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
457
#ifdef PADDLE_MOBILE_PROFILE
458 459 460
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
461 462 463 464 465 466 467
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
468 469 470
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
471 472
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
473
      int kernel_size = filter->dims()[2];
474 475
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
476
    } else {
477
      _tp[ops_of_block0_[i]->Type()] += timeCost;
478
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
479
  }
H
hjchen2 已提交
480
  printf("====================[ profile ]======================\n");
481
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
497
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
498
#endif
499
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
500 501
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

528
#ifdef PADDLE_MOBILE_FPGA
529 530 531 532
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
533
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
534 535
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
536
}
537

538 539
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
540
  InjectVariable(t, "feed0");
541
}
542

543
template <typename Device, typename T>
544
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
545
  auto input_size = v.size();
Z
zhangyang0701 已提交
546 547
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
548 549 550
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
551
    auto var = program_.scope->Var("feed", i + index);
552 553 554 555 556 557 558 559 560
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
561 562
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
563 564
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
565

566
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
567
    auto var = program_.scope->Var("fetch", i + index);
568 569
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
570
  }
571
}
572

573
template <typename Device, typename T>
574 575 576 577
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
578
}
579

580 581
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
582
  auto &ops = ops_of_block0_;
583

Z
zhangyang 已提交
584 585 586 587 588
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
589 590 591
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
592
}
593

594 595
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
596
  auto &ops = ops_of_block0_;
597
  end = end < 0 ? static_cast<int>(ops.size()) : end;
598 599 600 601 602 603 604 605 606 607 608 609
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
610
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
611 612 613 614 615 616 617
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
618
}
619

620 621
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
622
  Predict_From_To(start);
623
}
624

625 626
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
627
  Predict_From_To(0, end);
628
}
629 630
#endif

Y
yangfei 已提交
631
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
632 633
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
634
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
666

xiebaiyuan's avatar
xiebaiyuan 已提交
667 668 669
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
670 671 672 673 674 675 676
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
677 678 679 680 681

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
682
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
683
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
684
    if (input_dim_last_ != input.dims()) {
685 686 687
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
688 689 690 691 692 693 694 695
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
696 697
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
698 699
}

700 701 702
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
703

Y
yangfei 已提交
704
template <>
H
hjchen2 已提交
705 706
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

744
  const TensorDesc &desc = var_desc.Tensor_desc();
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
779

Y
yangfei 已提交
780
template <>
781 782
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
783 784 785
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
786
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
787
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
788
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
789
          continue;
L
liuruilong 已提交
790
        } else {
791
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
792
        }
L
liuruilong 已提交
793

Y
yangfei 已提交
794
        char *origin_data =
L
liuruilong 已提交
795
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
796
        char *data = origin_data;
Y
yangfei 已提交
797
        cl_context context = program_.scope->GetCLScpoe()->Context();
798
        const TensorDesc &desc = var_desc->Tensor_desc();
799 800 801 802 803
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
804
        float *tensorInput = static_cast<float *>(
805 806
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
807

808
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
809

L
liuruilong 已提交
810 811
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
812

813
        delete origin_data;
Y
yangfei 已提交
814
        paddle_mobile::memory::Free(tensorInput);
815
      } else {
816 817
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
818
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
819 820
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
821

822 823 824
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
825
          DLOG << var_desc->Name();
L
liuruilong 已提交
826
          cl_image->InitEmptyImage(context, command_queue, ddim);
827
        }
Y
yangfei 已提交
828 829 830 831
      }
    }
  }
}
832

Y
yangfei 已提交
833
template <>
834
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
835 836
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
837 838
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
839 840
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
841
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
842 843
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
844
    self_alloc = true;
L
liuruilong 已提交
845
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
846 847
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
848
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
849

850
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
851 852 853
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
854
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
855
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
856
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
857
          continue;
L
liuruilong 已提交
858
        } else {
859
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
860 861 862 863
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

864 865
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
866 867 868 869 870

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
871 872 873
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
874 875 876 877

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

878 879
        paddle_mobile::memory::Free(tensorInput);
      } else {
880
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
881
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
882 883
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
884 885 886
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
887
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
888 889 890
      }
    }
  }
Y
yangfei 已提交
891
  if (self_alloc) {
892
    delete data;
Y
yangfei 已提交
893
  }
Y
yangfei 已提交
894
  LOG(kLOG_INFO) << " end init combine memory ";
895
}
Y
yangfei 已提交
896 897 898

#endif

899
template class Executor<CPU, float>;
Y
yangfei 已提交
900

901
template class Executor<FPGA, float>;
W
wangliu 已提交
902

903
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
904

905
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
906 907

}  // namespace framework
W
wangliu 已提交
908
}  // namespace paddle_mobile