conv.py 14.6 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This package implements common layers to help building
graph neural networks.
"""
Y
Yelrose 已提交
17
import pgl
Y
yelrose 已提交
18
import paddle.fluid as fluid
Y
Yelrose 已提交
19
import paddle.fluid.layers as L
Y
yelrose 已提交
20
from pgl.utils import paddle_helper
F
fengshikun01 已提交
21
from pgl import message_passing
Y
yelrose 已提交
22

Y
Yelrose 已提交
23
__all__ = ['gcn', 'gat', 'gin', 'gaan', 'gen_conv', 'appnp']
Y
yelrose 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


def gcn(gw, feature, hidden_size, activation, name, norm=None):
    """Implementation of graph convolutional neural networks (GCN)

    This is an implementation of the paper SEMI-SUPERVISED CLASSIFICATION
    WITH GRAPH CONVOLUTIONAL NETWORKS (https://arxiv.org/pdf/1609.02907.pdf).

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for gcn.

        activation: The activation for the output.

        name: Gcn layer names.

        norm: If :code:`norm` is not None, then the feature will be normalized. Norm must
              be tensor with shape (num_nodes,) and dtype float32.

    Return:
        A tensor with shape (num_nodes, hidden_size)
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        return src_feat["h"]

    size = feature.shape[-1]
    if size > hidden_size:
Y
Yelrose 已提交
55
        feature = L.fc(feature,
Y
yelrose 已提交
56 57
                                  size=hidden_size,
                                  bias_attr=False,
Y
Yelrose 已提交
58
                                  param_attr=fluid.ParamAttr(name=name))
Y
yelrose 已提交
59 60 61 62 63 64 65 66 67 68

    if norm is not None:
        feature = feature * norm

    msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])

    if size > hidden_size:
        output = gw.recv(msg, "sum")
    else:
        output = gw.recv(msg, "sum")
Y
Yelrose 已提交
69
        output = L.fc(output,
Y
yelrose 已提交
70 71
                                 size=hidden_size,
                                 bias_attr=False,
Y
Yelrose 已提交
72
                                 param_attr=fluid.ParamAttr(name=name))
Y
yelrose 已提交
73 74 75 76

    if norm is not None:
        output = output * norm

Y
Yelrose 已提交
77
    bias = L.create_parameter(
Y
yelrose 已提交
78 79 80 81
        shape=[hidden_size],
        dtype='float32',
        is_bias=True,
        name=name + '_bias')
Y
Yelrose 已提交
82
    output = L.elementwise_add(output, bias, act=activation)
Y
yelrose 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    return output


def gat(gw,
        feature,
        hidden_size,
        activation,
        name,
        num_heads=8,
        feat_drop=0.6,
        attn_drop=0.6,
        is_test=False):
    """Implementation of graph attention networks (GAT)

    This is an implementation of the paper GRAPH ATTENTION NETWORKS
    (https://arxiv.org/abs/1710.10903).

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for gat.

        activation: The activation for the output.

        name: Gat layer names.

        num_heads: The head number in gat.

        feat_drop: Dropout rate for feature.

        attn_drop: Dropout rate for attention.

        is_test: Whether in test phrase.

    Return:
        A tensor with shape (num_nodes, hidden_size * num_heads)
    """

    def send_attention(src_feat, dst_feat, edge_feat):
        output = src_feat["left_a"] + dst_feat["right_a"]
Y
Yelrose 已提交
125
        output = L.leaky_relu(
Y
yelrose 已提交
126 127 128 129 130 131 132 133
            output, alpha=0.2)  # (num_edges, num_heads)
        return {"alpha": output, "h": src_feat["h"]}

    def reduce_attention(msg):
        alpha = msg["alpha"]  # lod-tensor (batch_size, seq_len, num_heads)
        h = msg["h"]
        alpha = paddle_helper.sequence_softmax(alpha)
        old_h = h
Y
Yelrose 已提交
134 135
        h = L.reshape(h, [-1, num_heads, hidden_size])
        alpha = L.reshape(alpha, [-1, num_heads, 1])
Y
yelrose 已提交
136
        if attn_drop > 1e-15:
Y
Yelrose 已提交
137
            alpha = L.dropout(
Y
yelrose 已提交
138 139 140 141 142
                alpha,
                dropout_prob=attn_drop,
                is_test=is_test,
                dropout_implementation="upscale_in_train")
        h = h * alpha
Y
Yelrose 已提交
143 144 145
        h = L.reshape(h, [-1, num_heads * hidden_size])
        h = L.lod_reset(h, old_h)
        return L.sequence_pool(h, "sum")
Y
yelrose 已提交
146 147

    if feat_drop > 1e-15:
Y
Yelrose 已提交
148
        feature = L.dropout(
Y
yelrose 已提交
149 150 151 152 153
            feature,
            dropout_prob=feat_drop,
            is_test=is_test,
            dropout_implementation='upscale_in_train')

Y
Yelrose 已提交
154
    ft = L.fc(feature,
Y
yelrose 已提交
155 156
                         hidden_size * num_heads,
                         bias_attr=False,
Y
Yelrose 已提交
157
                         param_attr=fluid.ParamAttr(name=name + '_weight'))
Y
Yelrose 已提交
158
    left_a = L.create_parameter(
Y
yelrose 已提交
159 160 161
        shape=[num_heads, hidden_size],
        dtype='float32',
        name=name + '_gat_l_A')
Y
Yelrose 已提交
162
    right_a = L.create_parameter(
Y
yelrose 已提交
163 164 165
        shape=[num_heads, hidden_size],
        dtype='float32',
        name=name + '_gat_r_A')
Y
Yelrose 已提交
166 167 168
    reshape_ft = L.reshape(ft, [-1, num_heads, hidden_size])
    left_a_value = L.reduce_sum(reshape_ft * left_a, -1)
    right_a_value = L.reduce_sum(reshape_ft * right_a, -1)
Y
yelrose 已提交
169 170 171 172 173 174

    msg = gw.send(
        send_attention,
        nfeat_list=[("h", ft), ("left_a", left_a_value),
                    ("right_a", right_a_value)])
    output = gw.recv(msg, reduce_attention)
Y
Yelrose 已提交
175
    bias = L.create_parameter(
Y
yelrose 已提交
176 177 178 179 180
        shape=[hidden_size * num_heads],
        dtype='float32',
        is_bias=True,
        name=name + '_bias')
    bias.stop_gradient = True
Y
Yelrose 已提交
181
    output = L.elementwise_add(output, bias, act=activation)
Y
yelrose 已提交
182
    return output
W
Webbley 已提交
183 184


W
Webbley 已提交
185 186 187 188 189 190 191
def gin(gw,
        feature,
        hidden_size,
        activation,
        name,
        init_eps=0.0,
        train_eps=False):
W
Webbley 已提交
192 193 194 195 196
    """Implementation of Graph Isomorphism Network (GIN) layer.

    This is an implementation of the paper How Powerful are Graph Neural Networks?
    (https://arxiv.org/pdf/1810.00826.pdf).

197 198 199
    In their implementation, all MLPs have 2 layers. Batch normalization is applied
    on every hidden layer.

W
Webbley 已提交
200 201 202 203 204 205 206
    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        name: GIN layer names.

W
Webbley 已提交
207 208 209 210
        hidden_size: The hidden size for gin.

        activation: The activation for the output.

W
Webbley 已提交
211 212 213 214 215 216 217
        init_eps: float, optional
            Initial :math:`\epsilon` value, default is 0.

        train_eps: bool, optional
            if True, :math:`\epsilon` will be a learnable parameter.

    Return:
W
Webbley 已提交
218
        A tensor with shape (num_nodes, hidden_size).
W
Webbley 已提交
219 220 221 222 223
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        return src_feat["h"]

Y
Yelrose 已提交
224
    epsilon = L.create_parameter(
W
Webbley 已提交
225 226
        shape=[1, 1],
        dtype="float32",
W
Webbley 已提交
227 228 229
        attr=fluid.ParamAttr(name="%s_eps" % name),
        default_initializer=fluid.initializer.ConstantInitializer(
            value=init_eps))
W
Webbley 已提交
230 231 232 233 234

    if not train_eps:
        epsilon.stop_gradient = True

    msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
W
Webbley 已提交
235
    output = gw.recv(msg, "sum") + feature * (epsilon + 1.0)
W
Webbley 已提交
236

Y
Yelrose 已提交
237
    output = L.fc(output,
W
Webbley 已提交
238
                             size=hidden_size,
239 240 241 242
                             act=None,
                             param_attr=fluid.ParamAttr(name="%s_w_0" % name),
                             bias_attr=fluid.ParamAttr(name="%s_b_0" % name))

Y
Yelrose 已提交
243
    output = L.layer_norm(
W
Webbley 已提交
244 245 246 247 248 249 250 251 252
        output,
        begin_norm_axis=1,
        param_attr=fluid.ParamAttr(
            name="norm_scale_%s" % (name),
            initializer=fluid.initializer.Constant(1.0)),
        bias_attr=fluid.ParamAttr(
            name="norm_bias_%s" % (name),
            initializer=fluid.initializer.Constant(0.0)), )

253
    if activation is not None:
Y
Yelrose 已提交
254
        output = getattr(L, activation)(output)
255

Y
Yelrose 已提交
256
    output = L.fc(output,
257 258 259 260
                             size=hidden_size,
                             act=activation,
                             param_attr=fluid.ParamAttr(name="%s_w_1" % name),
                             bias_attr=fluid.ParamAttr(name="%s_b_1" % name))
W
Webbley 已提交
261

W
Webbley 已提交
262
    return output
W
wangwenjin 已提交
263

W
wangwenjin 已提交
264 265 266

def gaan(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads, name):
    """Implementation of GaAN"""
W
wangwenjin 已提交
267

W
wangwenjin 已提交
268
    def send_func(src_feat, dst_feat, edge_feat):
W
wangwenjin 已提交
269 270
        # 计算每条边上的注意力分数
        # E * (M * D1), 每个 dst 点都查询它的全部邻边的 src 点
W
wangwenjin 已提交
271
        feat_query, feat_key = dst_feat['feat_query'], src_feat['feat_key']
W
wangwenjin 已提交
272 273
        # E * M * D1
        old = feat_query
Y
Yelrose 已提交
274 275
        feat_query = L.reshape(feat_query, [-1, heads, hidden_size_a])
        feat_key = L.reshape(feat_key, [-1, heads, hidden_size_a])
W
wangwenjin 已提交
276
        # E * M
Y
Yelrose 已提交
277
        alpha = L.reduce_sum(feat_key * feat_query, dim=-1)
W
wangwenjin 已提交
278 279 280 281 282 283 284 285

        return {'dst_node_feat': dst_feat['node_feat'],
                'src_node_feat': src_feat['node_feat'],
                'feat_value': src_feat['feat_value'],
                'alpha': alpha,
                'feat_gate': src_feat['feat_gate']}

    def recv_func(message):
W
wangwenjin 已提交
286 287 288 289 290
        # 每条边的终点的特征
        dst_feat = message['dst_node_feat']
        # 每条边的出发点的特征
        src_feat = message['src_node_feat']
        # 每个中心点自己的特征
Y
Yelrose 已提交
291
        x = L.sequence_pool(dst_feat, 'average')
W
wangwenjin 已提交
292
        # 每个中心点的邻居的特征的平均值
Y
Yelrose 已提交
293
        z = L.sequence_pool(src_feat, 'average')
W
wangwenjin 已提交
294 295

        # 计算 gate
W
wangwenjin 已提交
296
        feat_gate = message['feat_gate']
Y
Yelrose 已提交
297 298 299
        g_max = L.sequence_pool(feat_gate, 'max')
        g = L.concat([x, g_max, z], axis=1)
        g = L.fc(g, heads, bias_attr=False, act="sigmoid")
W
wangwenjin 已提交
300

W
wangwenjin 已提交
301
        # softmax
W
wangwenjin 已提交
302
        alpha = message['alpha']
W
wangwenjin 已提交
303
        alpha = paddle_helper.sequence_softmax(alpha) # E * M
W
wangwenjin 已提交
304

W
wangwenjin 已提交
305
        feat_value = message['feat_value'] # E * (M * D2)
W
wangwenjin 已提交
306
        old = feat_value
Y
Yelrose 已提交
307 308 309 310
        feat_value = L.reshape(feat_value, [-1, heads, hidden_size_v]) # E * M * D2
        feat_value = L.elementwise_mul(feat_value, alpha, axis=0)
        feat_value = L.reshape(feat_value, [-1, heads*hidden_size_v]) # E * (M * D2)
        feat_value = L.lod_reset(feat_value, old)
W
wangwenjin 已提交
311

Y
Yelrose 已提交
312
        feat_value = L.sequence_pool(feat_value, 'sum') # N * (M * D2)
W
wangwenjin 已提交
313

Y
Yelrose 已提交
314
        feat_value = L.reshape(feat_value, [-1, heads, hidden_size_v]) # N * M * D2
W
wangwenjin 已提交
315

Y
Yelrose 已提交
316 317
        output = L.elementwise_mul(feat_value, g, axis=0)
        output = L.reshape(output, [-1, heads * hidden_size_v]) # N * (M * D2)
W
wangwenjin 已提交
318

Y
Yelrose 已提交
319
        output = L.concat([x, output], axis=1)
W
wangwenjin 已提交
320 321 322

        return output

W
wangwenjin 已提交
323 324 325 326 327
    # feature N * D

    # 计算每个点自己需要发送出去的内容
    # 投影后的特征向量
    # N * (D1 * M)
Y
Yelrose 已提交
328
    feat_key = L.fc(feature, hidden_size_a * heads, bias_attr=False,
W
wangwenjin 已提交
329 330
                     param_attr=fluid.ParamAttr(name=name + '_project_key'))
    # N * (D2 * M)
Y
Yelrose 已提交
331
    feat_value = L.fc(feature, hidden_size_v * heads, bias_attr=False,
W
wangwenjin 已提交
332 333
                     param_attr=fluid.ParamAttr(name=name + '_project_value'))
    # N * (D1 * M)
Y
Yelrose 已提交
334
    feat_query = L.fc(feature, hidden_size_a * heads, bias_attr=False,
W
wangwenjin 已提交
335 336
                     param_attr=fluid.ParamAttr(name=name + '_project_query'))
    # N * Dm
Y
Yelrose 已提交
337
    feat_gate = L.fc(feature, hidden_size_m, bias_attr=False, 
W
wangwenjin 已提交
338 339 340 341 342 343 344 345 346 347 348 349
                                param_attr=fluid.ParamAttr(name=name + '_project_gate'))

    # send 阶段

    message = gw.send(
        send_func,
        nfeat_list=[('node_feat', feature), ('feat_key', feat_key), ('feat_value', feat_value),
                    ('feat_query', feat_query), ('feat_gate', feat_gate)],
        efeat_list=None,
    )

    # 聚合邻居特征
W
wangwenjin 已提交
350
    output = gw.recv(message, recv_func)
Y
Yelrose 已提交
351
    output = L.fc(output, hidden_size_o, bias_attr=False,
W
wangwenjin 已提交
352
                            param_attr=fluid.ParamAttr(name=name + '_project_output'))
Y
Yelrose 已提交
353 354
    output = L.leaky_relu(output, alpha=0.1)
    output = L.dropout(output, dropout_prob=0.1)
W
wangwenjin 已提交
355 356

    return output
F
fengshikun01 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380


def gen_conv(gw,
        feature,
        name,
        beta=None):
    """Implementation of GENeralized Graph Convolution (GENConv), see the paper
    "DeeperGCN: All You Need to Train Deeper GCNs" in
    https://arxiv.org/pdf/2006.07739.pdf

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        beta: [0, +infinity] or "dynamic" or None

        name: deeper gcn layer names.

    Return:
        A tensor with shape (num_nodes, feature_size)
    """
   
    if beta == "dynamic":
Y
Yelrose 已提交
381
        beta = L.create_parameter(
F
fengshikun01 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
                shape=[1],
                dtype='float32',
                default_initializer=
                    fluid.initializer.ConstantInitializer(value=1.0),
                name=name + '_beta')
    
    # message passing
    msg = gw.send(message_passing.copy_send, nfeat_list=[("h", feature)])
    output = gw.recv(msg, message_passing.softmax_agg(beta))
    
    # msg norm
    output = message_passing.msg_norm(feature, output, name)
    output = feature + output
    
Y
Yelrose 已提交
396
    output = L.fc(output,
F
fengshikun01 已提交
397 398 399 400 401
                     feature.shape[-1],
                     bias_attr=False,
                     act="relu",
                     param_attr=fluid.ParamAttr(name=name + '_weight1'))
    
Y
Yelrose 已提交
402
    output = L.fc(output,
F
fengshikun01 已提交
403 404 405 406 407 408
                     feature.shape[-1],
                     bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_weight2'))

    return output

Y
Yelrose 已提交
409 410
def get_norm(indegree):
    """Get Laplacian Normalization"""
Y
Yelrose 已提交
411 412 413
    float_degree = L.cast(indegree, dtype="float32")
    float_degree = L.clamp(float_degree, min=1.0)
    norm = L.pow(float_degree, factor=-0.5) 
Y
Yelrose 已提交
414 415 416
    return norm

def appnp(gw, feature, edge_dropout=0, alpha=0.2, k_hop=10):
Y
Yelrose 已提交
417 418 419 420 421 422 423 424
    """Implementation of APPNP of "Predict then Propagate: Graph Neural Networks
    meet Personalized PageRank"  (ICLR 2019). 

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

Y
Yelrose 已提交
425
        edge_dropout: Edge dropout rate.
Y
Yelrose 已提交
426 427 428 429 430 431 432 433 434 435 436 437

        k_hop: K Steps for Propagation

    Return:
        A tensor with shape (num_nodes, hidden_size)
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
       feature = src_feat["h"]
       return feature

    h0 = feature
Y
Yelrose 已提交
438 439
    ngw = gw 
    norm = get_norm(ngw.indegree())
Y
Yelrose 已提交
440 441
    
    for i in range(k_hop):
Y
Yelrose 已提交
442 443 444 445 446
        if edge_dropout > 1e-5:     
            ngw = pgl.sample.edge_drop(gw, edge_dropout) 
            norm = get_norm(ngw.indegree())
            
        feature = feature * norm
Y
Yelrose 已提交
447 448 449 450 451

        msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])

        feature = gw.recv(msg, "sum")

Y
Yelrose 已提交
452
        feature = feature * norm
Y
Yelrose 已提交
453 454 455

        feature = feature * (1 - alpha) + h0 * alpha
    return feature