conv.py 15.2 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This package implements common layers to help building
graph neural networks.
"""
Y
Yelrose 已提交
17
import pgl
Y
yelrose 已提交
18 19
import paddle.fluid as fluid
from pgl.utils import paddle_helper
F
fengshikun01 已提交
20
from pgl import message_passing
Y
yelrose 已提交
21

Y
Yelrose 已提交
22
__all__ = ['gcn', 'gat', 'gin', 'gaan', 'gen_conv', 'appnp']
Y
yelrose 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


def gcn(gw, feature, hidden_size, activation, name, norm=None):
    """Implementation of graph convolutional neural networks (GCN)

    This is an implementation of the paper SEMI-SUPERVISED CLASSIFICATION
    WITH GRAPH CONVOLUTIONAL NETWORKS (https://arxiv.org/pdf/1609.02907.pdf).

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for gcn.

        activation: The activation for the output.

        name: Gcn layer names.

        norm: If :code:`norm` is not None, then the feature will be normalized. Norm must
              be tensor with shape (num_nodes,) and dtype float32.

    Return:
        A tensor with shape (num_nodes, hidden_size)
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        return src_feat["h"]

    size = feature.shape[-1]
    if size > hidden_size:
        feature = fluid.layers.fc(feature,
                                  size=hidden_size,
                                  bias_attr=False,
Y
Yelrose 已提交
57
                                  param_attr=fluid.ParamAttr(name=name))
Y
yelrose 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70

    if norm is not None:
        feature = feature * norm

    msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])

    if size > hidden_size:
        output = gw.recv(msg, "sum")
    else:
        output = gw.recv(msg, "sum")
        output = fluid.layers.fc(output,
                                 size=hidden_size,
                                 bias_attr=False,
Y
Yelrose 已提交
71
                                 param_attr=fluid.ParamAttr(name=name))
Y
yelrose 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    if norm is not None:
        output = output * norm

    bias = fluid.layers.create_parameter(
        shape=[hidden_size],
        dtype='float32',
        is_bias=True,
        name=name + '_bias')
    output = fluid.layers.elementwise_add(output, bias, act=activation)
    return output


def gat(gw,
        feature,
        hidden_size,
        activation,
        name,
        num_heads=8,
        feat_drop=0.6,
        attn_drop=0.6,
        is_test=False):
    """Implementation of graph attention networks (GAT)

    This is an implementation of the paper GRAPH ATTENTION NETWORKS
    (https://arxiv.org/abs/1710.10903).

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for gat.

        activation: The activation for the output.

        name: Gat layer names.

        num_heads: The head number in gat.

        feat_drop: Dropout rate for feature.

        attn_drop: Dropout rate for attention.

        is_test: Whether in test phrase.

    Return:
        A tensor with shape (num_nodes, hidden_size * num_heads)
    """

    def send_attention(src_feat, dst_feat, edge_feat):
        output = src_feat["left_a"] + dst_feat["right_a"]
        output = fluid.layers.leaky_relu(
            output, alpha=0.2)  # (num_edges, num_heads)
        return {"alpha": output, "h": src_feat["h"]}

    def reduce_attention(msg):
        alpha = msg["alpha"]  # lod-tensor (batch_size, seq_len, num_heads)
        h = msg["h"]
        alpha = paddle_helper.sequence_softmax(alpha)
        old_h = h
        h = fluid.layers.reshape(h, [-1, num_heads, hidden_size])
        alpha = fluid.layers.reshape(alpha, [-1, num_heads, 1])
        if attn_drop > 1e-15:
            alpha = fluid.layers.dropout(
                alpha,
                dropout_prob=attn_drop,
                is_test=is_test,
                dropout_implementation="upscale_in_train")
        h = h * alpha
        h = fluid.layers.reshape(h, [-1, num_heads * hidden_size])
        h = fluid.layers.lod_reset(h, old_h)
        return fluid.layers.sequence_pool(h, "sum")

    if feat_drop > 1e-15:
        feature = fluid.layers.dropout(
            feature,
            dropout_prob=feat_drop,
            is_test=is_test,
            dropout_implementation='upscale_in_train')

    ft = fluid.layers.fc(feature,
                         hidden_size * num_heads,
                         bias_attr=False,
Y
Yelrose 已提交
156
                         param_attr=fluid.ParamAttr(name=name + '_weight'))
Y
yelrose 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    left_a = fluid.layers.create_parameter(
        shape=[num_heads, hidden_size],
        dtype='float32',
        name=name + '_gat_l_A')
    right_a = fluid.layers.create_parameter(
        shape=[num_heads, hidden_size],
        dtype='float32',
        name=name + '_gat_r_A')
    reshape_ft = fluid.layers.reshape(ft, [-1, num_heads, hidden_size])
    left_a_value = fluid.layers.reduce_sum(reshape_ft * left_a, -1)
    right_a_value = fluid.layers.reduce_sum(reshape_ft * right_a, -1)

    msg = gw.send(
        send_attention,
        nfeat_list=[("h", ft), ("left_a", left_a_value),
                    ("right_a", right_a_value)])
    output = gw.recv(msg, reduce_attention)
    bias = fluid.layers.create_parameter(
        shape=[hidden_size * num_heads],
        dtype='float32',
        is_bias=True,
        name=name + '_bias')
    bias.stop_gradient = True
    output = fluid.layers.elementwise_add(output, bias, act=activation)
    return output
W
Webbley 已提交
182 183


W
Webbley 已提交
184 185 186 187 188 189 190
def gin(gw,
        feature,
        hidden_size,
        activation,
        name,
        init_eps=0.0,
        train_eps=False):
W
Webbley 已提交
191 192 193 194 195
    """Implementation of Graph Isomorphism Network (GIN) layer.

    This is an implementation of the paper How Powerful are Graph Neural Networks?
    (https://arxiv.org/pdf/1810.00826.pdf).

196 197 198
    In their implementation, all MLPs have 2 layers. Batch normalization is applied
    on every hidden layer.

W
Webbley 已提交
199 200 201 202 203 204 205
    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        name: GIN layer names.

W
Webbley 已提交
206 207 208 209
        hidden_size: The hidden size for gin.

        activation: The activation for the output.

W
Webbley 已提交
210 211 212 213 214 215 216
        init_eps: float, optional
            Initial :math:`\epsilon` value, default is 0.

        train_eps: bool, optional
            if True, :math:`\epsilon` will be a learnable parameter.

    Return:
W
Webbley 已提交
217
        A tensor with shape (num_nodes, hidden_size).
W
Webbley 已提交
218 219 220 221 222 223 224 225
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        return src_feat["h"]

    epsilon = fluid.layers.create_parameter(
        shape=[1, 1],
        dtype="float32",
W
Webbley 已提交
226 227 228
        attr=fluid.ParamAttr(name="%s_eps" % name),
        default_initializer=fluid.initializer.ConstantInitializer(
            value=init_eps))
W
Webbley 已提交
229 230 231 232 233

    if not train_eps:
        epsilon.stop_gradient = True

    msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
W
Webbley 已提交
234
    output = gw.recv(msg, "sum") + feature * (epsilon + 1.0)
W
Webbley 已提交
235

W
Webbley 已提交
236 237
    output = fluid.layers.fc(output,
                             size=hidden_size,
238 239 240 241
                             act=None,
                             param_attr=fluid.ParamAttr(name="%s_w_0" % name),
                             bias_attr=fluid.ParamAttr(name="%s_b_0" % name))

W
Webbley 已提交
242 243 244 245 246 247 248 249 250 251
    output = fluid.layers.layer_norm(
        output,
        begin_norm_axis=1,
        param_attr=fluid.ParamAttr(
            name="norm_scale_%s" % (name),
            initializer=fluid.initializer.Constant(1.0)),
        bias_attr=fluid.ParamAttr(
            name="norm_bias_%s" % (name),
            initializer=fluid.initializer.Constant(0.0)), )

252 253
    if activation is not None:
        output = getattr(fluid.layers, activation)(output)
254 255 256 257 258 259

    output = fluid.layers.fc(output,
                             size=hidden_size,
                             act=activation,
                             param_attr=fluid.ParamAttr(name="%s_w_1" % name),
                             bias_attr=fluid.ParamAttr(name="%s_b_1" % name))
W
Webbley 已提交
260

W
Webbley 已提交
261
    return output
W
wangwenjin 已提交
262

W
wangwenjin 已提交
263 264 265

def gaan(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads, name):
    """Implementation of GaAN"""
W
wangwenjin 已提交
266

W
wangwenjin 已提交
267
    def send_func(src_feat, dst_feat, edge_feat):
W
wangwenjin 已提交
268 269
        # 计算每条边上的注意力分数
        # E * (M * D1), 每个 dst 点都查询它的全部邻边的 src 点
W
wangwenjin 已提交
270
        feat_query, feat_key = dst_feat['feat_query'], src_feat['feat_key']
W
wangwenjin 已提交
271 272
        # E * M * D1
        old = feat_query
W
wangwenjin 已提交
273 274
        feat_query = fluid.layers.reshape(feat_query, [-1, heads, hidden_size_a])
        feat_key = fluid.layers.reshape(feat_key, [-1, heads, hidden_size_a])
W
wangwenjin 已提交
275
        # E * M
W
wangwenjin 已提交
276 277 278 279 280 281 282 283 284
        alpha = fluid.layers.reduce_sum(feat_key * feat_query, dim=-1)

        return {'dst_node_feat': dst_feat['node_feat'],
                'src_node_feat': src_feat['node_feat'],
                'feat_value': src_feat['feat_value'],
                'alpha': alpha,
                'feat_gate': src_feat['feat_gate']}

    def recv_func(message):
W
wangwenjin 已提交
285 286 287 288 289 290 291 292 293 294
        # 每条边的终点的特征
        dst_feat = message['dst_node_feat']
        # 每条边的出发点的特征
        src_feat = message['src_node_feat']
        # 每个中心点自己的特征
        x = fluid.layers.sequence_pool(dst_feat, 'average')
        # 每个中心点的邻居的特征的平均值
        z = fluid.layers.sequence_pool(src_feat, 'average')

        # 计算 gate
W
wangwenjin 已提交
295 296 297
        feat_gate = message['feat_gate']
        g_max = fluid.layers.sequence_pool(feat_gate, 'max')
        g = fluid.layers.concat([x, g_max, z], axis=1)
W
wangwenjin 已提交
298
        g = fluid.layers.fc(g, heads, bias_attr=False, act="sigmoid")
W
wangwenjin 已提交
299

W
wangwenjin 已提交
300
        # softmax
W
wangwenjin 已提交
301
        alpha = message['alpha']
W
wangwenjin 已提交
302
        alpha = paddle_helper.sequence_softmax(alpha) # E * M
W
wangwenjin 已提交
303

W
wangwenjin 已提交
304
        feat_value = message['feat_value'] # E * (M * D2)
W
wangwenjin 已提交
305
        old = feat_value
W
wangwenjin 已提交
306
        feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v]) # E * M * D2
W
wangwenjin 已提交
307
        feat_value = fluid.layers.elementwise_mul(feat_value, alpha, axis=0)
W
wangwenjin 已提交
308
        feat_value = fluid.layers.reshape(feat_value, [-1, heads*hidden_size_v]) # E * (M * D2)
W
wangwenjin 已提交
309
        feat_value = fluid.layers.lod_reset(feat_value, old)
W
wangwenjin 已提交
310 311 312 313 314

        feat_value = fluid.layers.sequence_pool(feat_value, 'sum') # N * (M * D2)

        feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v]) # N * M * D2

W
wangwenjin 已提交
315
        output = fluid.layers.elementwise_mul(feat_value, g, axis=0)
W
wangwenjin 已提交
316 317
        output = fluid.layers.reshape(output, [-1, heads * hidden_size_v]) # N * (M * D2)

W
wangwenjin 已提交
318 319 320 321
        output = fluid.layers.concat([x, output], axis=1)

        return output

W
wangwenjin 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    # feature N * D

    # 计算每个点自己需要发送出去的内容
    # 投影后的特征向量
    # N * (D1 * M)
    feat_key = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_key'))
    # N * (D2 * M)
    feat_value = fluid.layers.fc(feature, hidden_size_v * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_value'))
    # N * (D1 * M)
    feat_query = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_query'))
    # N * Dm
    feat_gate = fluid.layers.fc(feature, hidden_size_m, bias_attr=False, 
                                param_attr=fluid.ParamAttr(name=name + '_project_gate'))

    # send 阶段

    message = gw.send(
        send_func,
        nfeat_list=[('node_feat', feature), ('feat_key', feat_key), ('feat_value', feat_value),
                    ('feat_query', feat_query), ('feat_gate', feat_gate)],
        efeat_list=None,
    )

    # 聚合邻居特征
W
wangwenjin 已提交
349 350
    output = gw.recv(message, recv_func)
    output = fluid.layers.fc(output, hidden_size_o, bias_attr=False,
W
wangwenjin 已提交
351 352
                            param_attr=fluid.ParamAttr(name=name + '_project_output'))
    output = fluid.layers.leaky_relu(output, alpha=0.1)
W
wangwenjin 已提交
353 354 355
    output = fluid.layers.dropout(output, dropout_prob=0.1)

    return output
F
fengshikun01 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407


def gen_conv(gw,
        feature,
        name,
        beta=None):
    """Implementation of GENeralized Graph Convolution (GENConv), see the paper
    "DeeperGCN: All You Need to Train Deeper GCNs" in
    https://arxiv.org/pdf/2006.07739.pdf

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        beta: [0, +infinity] or "dynamic" or None

        name: deeper gcn layer names.

    Return:
        A tensor with shape (num_nodes, feature_size)
    """
   
    if beta == "dynamic":
        beta = fluid.layers.create_parameter(
                shape=[1],
                dtype='float32',
                default_initializer=
                    fluid.initializer.ConstantInitializer(value=1.0),
                name=name + '_beta')
    
    # message passing
    msg = gw.send(message_passing.copy_send, nfeat_list=[("h", feature)])
    output = gw.recv(msg, message_passing.softmax_agg(beta))
    
    # msg norm
    output = message_passing.msg_norm(feature, output, name)
    output = feature + output
    
    output = fluid.layers.fc(output,
                     feature.shape[-1],
                     bias_attr=False,
                     act="relu",
                     param_attr=fluid.ParamAttr(name=name + '_weight1'))
    
    output = fluid.layers.fc(output,
                     feature.shape[-1],
                     bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_weight2'))

    return output

Y
Yelrose 已提交
408 409 410 411 412 413 414 415
def get_norm(indegree):
    """Get Laplacian Normalization"""
    norm = fluid.layers.pow(fluid.layers.cast(indegree, dtype="float32") + 1e-6,
                     factor=-0.5) 
    norm = norm * fluid.layers.cast(indegree > 0, dtype="float32")
    return norm

def appnp(gw, feature, edge_dropout=0, alpha=0.2, k_hop=10):
Y
Yelrose 已提交
416 417 418 419 420 421 422 423
    """Implementation of APPNP of "Predict then Propagate: Graph Neural Networks
    meet Personalized PageRank"  (ICLR 2019). 

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

Y
Yelrose 已提交
424
        edge_dropout: Edge dropout rate.
Y
Yelrose 已提交
425 426 427 428 429 430 431 432 433 434 435 436

        k_hop: K Steps for Propagation

    Return:
        A tensor with shape (num_nodes, hidden_size)
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
       feature = src_feat["h"]
       return feature

    h0 = feature
Y
Yelrose 已提交
437 438
    ngw = gw 
    norm = get_norm(ngw.indegree())
Y
Yelrose 已提交
439 440
    
    for i in range(k_hop):
Y
Yelrose 已提交
441 442 443 444 445
        if edge_dropout > 1e-5:     
            ngw = pgl.sample.edge_drop(gw, edge_dropout) 
            norm = get_norm(ngw.indegree())
            
        feature = feature * norm
Y
Yelrose 已提交
446 447 448 449 450

        msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])

        feature = gw.recv(msg, "sum")

Y
Yelrose 已提交
451
        feature = feature * norm
Y
Yelrose 已提交
452 453 454

        feature = feature * (1 - alpha) + h0 * alpha
    return feature