提交 fc6e0397 编写于 作者: W wangwenjin

modify GaAN

上级 855f0f99
......@@ -2,6 +2,8 @@
/examples/GaAN/dataset/
/examples/GaAN/log/
/examples/GaAN/__pycache__/
/examples/GaAN/params/
/DoorGod
# Virtualenv
/.venv/
/venv/
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This package implements common layers to help building
graph neural networks.
"""
import paddle.fluid as fluid
from pgl import graph_wrapper
from pgl.utils import paddle_helper
__all__ = ['gcn', 'gat', 'gin', 'gaan']
def gcn(gw, feature, hidden_size, activation, name, norm=None):
"""Implementation of graph convolutional neural networks (GCN)
This is an implementation of the paper SEMI-SUPERVISED CLASSIFICATION
WITH GRAPH CONVOLUTIONAL NETWORKS (https://arxiv.org/pdf/1609.02907.pdf).
Args:
gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
feature: A tensor with shape (num_nodes, feature_size).
hidden_size: The hidden size for gcn.
activation: The activation for the output.
name: Gcn layer names.
norm: If :code:`norm` is not None, then the feature will be normalized. Norm must
be tensor with shape (num_nodes,) and dtype float32.
Return:
A tensor with shape (num_nodes, hidden_size)
"""
def send_src_copy(src_feat, dst_feat, edge_feat):
return src_feat["h"]
size = feature.shape[-1]
if size > hidden_size:
feature = fluid.layers.fc(feature,
size=hidden_size,
bias_attr=False,
param_attr=fluid.ParamAttr(name=name))
if norm is not None:
feature = feature * norm
msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
if size > hidden_size:
output = gw.recv(msg, "sum")
else:
output = gw.recv(msg, "sum")
output = fluid.layers.fc(output,
size=hidden_size,
bias_attr=False,
param_attr=fluid.ParamAttr(name=name))
if norm is not None:
output = output * norm
bias = fluid.layers.create_parameter(
shape=[hidden_size],
dtype='float32',
is_bias=True,
name=name + '_bias')
output = fluid.layers.elementwise_add(output, bias, act=activation)
return output
def gat(gw,
feature,
hidden_size,
activation,
name,
num_heads=8,
feat_drop=0.6,
attn_drop=0.6,
is_test=False):
"""Implementation of graph attention networks (GAT)
This is an implementation of the paper GRAPH ATTENTION NETWORKS
(https://arxiv.org/abs/1710.10903).
Args:
gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
feature: A tensor with shape (num_nodes, feature_size).
hidden_size: The hidden size for gat.
activation: The activation for the output.
name: Gat layer names.
num_heads: The head number in gat.
feat_drop: Dropout rate for feature.
attn_drop: Dropout rate for attention.
is_test: Whether in test phrase.
Return:
A tensor with shape (num_nodes, hidden_size * num_heads)
"""
def send_attention(src_feat, dst_feat, edge_feat):
output = src_feat["left_a"] + dst_feat["right_a"]
output = fluid.layers.leaky_relu(
output, alpha=0.2) # (num_edges, num_heads)
return {"alpha": output, "h": src_feat["h"]}
def reduce_attention(msg):
alpha = msg["alpha"] # lod-tensor (batch_size, seq_len, num_heads)
h = msg["h"]
alpha = paddle_helper.sequence_softmax(alpha)
old_h = h
h = fluid.layers.reshape(h, [-1, num_heads, hidden_size])
alpha = fluid.layers.reshape(alpha, [-1, num_heads, 1])
if attn_drop > 1e-15:
alpha = fluid.layers.dropout(
alpha,
dropout_prob=attn_drop,
is_test=is_test,
dropout_implementation="upscale_in_train")
h = h * alpha
h = fluid.layers.reshape(h, [-1, num_heads * hidden_size])
h = fluid.layers.lod_reset(h, old_h)
return fluid.layers.sequence_pool(h, "sum")
if feat_drop > 1e-15:
feature = fluid.layers.dropout(
feature,
dropout_prob=feat_drop,
is_test=is_test,
dropout_implementation='upscale_in_train')
ft = fluid.layers.fc(feature,
hidden_size * num_heads,
bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_weight'))
left_a = fluid.layers.create_parameter(
shape=[num_heads, hidden_size],
dtype='float32',
name=name + '_gat_l_A')
right_a = fluid.layers.create_parameter(
shape=[num_heads, hidden_size],
dtype='float32',
name=name + '_gat_r_A')
reshape_ft = fluid.layers.reshape(ft, [-1, num_heads, hidden_size])
left_a_value = fluid.layers.reduce_sum(reshape_ft * left_a, -1)
right_a_value = fluid.layers.reduce_sum(reshape_ft * right_a, -1)
msg = gw.send(
send_attention,
nfeat_list=[("h", ft), ("left_a", left_a_value),
("right_a", right_a_value)])
output = gw.recv(msg, reduce_attention)
bias = fluid.layers.create_parameter(
shape=[hidden_size * num_heads],
dtype='float32',
is_bias=True,
name=name + '_bias')
bias.stop_gradient = True
output = fluid.layers.elementwise_add(output, bias, act=activation)
return output
def gin(gw,
feature,
hidden_size,
activation,
name,
init_eps=0.0,
train_eps=False):
"""Implementation of Graph Isomorphism Network (GIN) layer.
This is an implementation of the paper How Powerful are Graph Neural Networks?
(https://arxiv.org/pdf/1810.00826.pdf).
In their implementation, all MLPs have 2 layers. Batch normalization is applied
on every hidden layer.
Args:
gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
feature: A tensor with shape (num_nodes, feature_size).
name: GIN layer names.
hidden_size: The hidden size for gin.
activation: The activation for the output.
init_eps: float, optional
Initial :math:`\epsilon` value, default is 0.
train_eps: bool, optional
if True, :math:`\epsilon` will be a learnable parameter.
Return:
A tensor with shape (num_nodes, hidden_size).
"""
def send_src_copy(src_feat, dst_feat, edge_feat):
return src_feat["h"]
epsilon = fluid.layers.create_parameter(
shape=[1, 1],
dtype="float32",
attr=fluid.ParamAttr(name="%s_eps" % name),
default_initializer=fluid.initializer.ConstantInitializer(
value=init_eps))
if not train_eps:
epsilon.stop_gradient = True
msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
output = gw.recv(msg, "sum") + feature * (epsilon + 1.0)
output = fluid.layers.fc(output,
size=hidden_size,
act=None,
param_attr=fluid.ParamAttr(name="%s_w_0" % name),
bias_attr=fluid.ParamAttr(name="%s_b_0" % name))
output = fluid.layers.layer_norm(
output,
begin_norm_axis=1,
param_attr=fluid.ParamAttr(
name="norm_scale_%s" % (name),
initializer=fluid.initializer.Constant(1.0)),
bias_attr=fluid.ParamAttr(
name="norm_bias_%s" % (name),
initializer=fluid.initializer.Constant(0.0)), )
if activation is not None:
output = getattr(fluid.layers, activation)(output)
output = fluid.layers.fc(output,
size=hidden_size,
act=activation,
param_attr=fluid.ParamAttr(name="%s_w_1" % name),
bias_attr=fluid.ParamAttr(name="%s_b_1" % name))
return output
def gaan(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads, name):
"""Implementation of GaAN"""
def send_func(src_feat, dst_feat, edge_feat):
# 计算每条边上的注意力分数
# E * (M * D1), 每个 dst 点都查询它的全部邻边的 src 点
feat_query, feat_key = dst_feat['feat_query'], src_feat['feat_key']
# E * M * D1
old = feat_query
feat_query = fluid.layers.reshape(feat_query, [-1, heads, hidden_size_a])
feat_key = fluid.layers.reshape(feat_key, [-1, heads, hidden_size_a])
# E * M
alpha = fluid.layers.reduce_sum(feat_key * feat_query, dim=-1)
return {'dst_node_feat': dst_feat['node_feat'],
'src_node_feat': src_feat['node_feat'],
'feat_value': src_feat['feat_value'],
'alpha': alpha,
'feat_gate': src_feat['feat_gate']}
def recv_func(message):
# 每条边的终点的特征
dst_feat = message['dst_node_feat']
# 每条边的出发点的特征
src_feat = message['src_node_feat']
# 每个中心点自己的特征
x = fluid.layers.sequence_pool(dst_feat, 'average')
# 每个中心点的邻居的特征的平均值
z = fluid.layers.sequence_pool(src_feat, 'average')
# 计算 gate
feat_gate = message['feat_gate']
g_max = fluid.layers.sequence_pool(feat_gate, 'max')
g = fluid.layers.concat([x, g_max, z], axis=1)
g = fluid.layers.fc(g, heads, bias_attr=False, act="sigmoid")
# softmax
alpha = message['alpha']
alpha = paddle_helper.sequence_softmax(alpha) # E * M
feat_value = message['feat_value'] # E * (M * D2)
old = feat_value
feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v]) # E * M * D2
feat_value = fluid.layers.elementwise_mul(feat_value, alpha, axis=0)
feat_value = fluid.layers.reshape(feat_value, [-1, heads*hidden_size_v]) # E * (M * D2)
feat_value = fluid.layers.lod_reset(feat_value, old)
feat_value = fluid.layers.sequence_pool(feat_value, 'sum') # N * (M * D2)
feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v]) # N * M * D2
output = fluid.layers.elementwise_mul(feat_value, g, axis=0)
output = fluid.layers.reshape(output, [-1, heads * hidden_size_v]) # N * (M * D2)
output = fluid.layers.concat([x, output], axis=1)
return output
# feature N * D
# 计算每个点自己需要发送出去的内容
# 投影后的特征向量
# N * (D1 * M)
feat_key = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_project_key'))
# N * (D2 * M)
feat_value = fluid.layers.fc(feature, hidden_size_v * heads, bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_project_value'))
# N * (D1 * M)
feat_query = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_project_query'))
# N * Dm
feat_gate = fluid.layers.fc(feature, hidden_size_m, bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_project_gate'))
# send 阶段
message = gw.send(
send_func,
nfeat_list=[('node_feat', feature), ('feat_key', feat_key), ('feat_value', feat_value),
('feat_query', feat_query), ('feat_gate', feat_gate)],
efeat_list=None,
)
# 聚合邻居特征
output = gw.recv(message, recv_func)
output = fluid.layers.fc(output, hidden_size_o, bias_attr=False,
param_attr=fluid.ParamAttr(name=name + '_project_output'))
output = fluid.layers.leaky_relu(output, alpha=0.1)
output = fluid.layers.dropout(output, dropout_prob=0.1)
return output
python3 train.py --epochs 100 --lr 1e-2 --rc 0 --batch_size 1024 --gpu_id 4 --exp_id 39
\ No newline at end of file
from paddle import fluid
from pgl.utils import paddle_helper
from pgl.layers import GaAN
# from pgl.layers import gaan
from conv import gaan
class GaANModel(object):
def __init__(self, num_class, num_layers, hidden_size_a=24,
......@@ -19,9 +21,9 @@ class GaANModel(object):
def forward(self, gw):
feature = gw.node_feat['node_feat']
for i in range(self.num_layers):
feature = GaAN(gw, feature, self.hidden_size_a, self.hidden_size_v,
self.hidden_size_m, self.hidden_size_o, self.heads,
self.name+'_'+str(i))
feature = gaan(gw, feature, self.hidden_size_a, self.hidden_size_v,
self.hidden_size_m, self.hidden_size_o, self.heads,
self.name+'_'+str(i))
pred = fluid.layers.fc(
feature, self.num_class, act=None, name=self.name + "_pred_output")
......
......@@ -119,14 +119,6 @@ if __name__ == "__main__":
val_program = train_program.clone(for_test=True)
with fluid.program_guard(train_program, startup_program):
# adam = fluid.optimizer.Adam(
# learning_rate=1e-2,
# regularization=fluid.regularizer.L2DecayRegularizer(
# regularization_coeff=0.0005))
# lr = fluid.layers.natural_exp_decay(learning_rate=args.lr,
# decay_steps=1000,
# decay_rate=0.5,
# )
lr = args.lr
adam = fluid.optimizer.Adam(
learning_rate=lr,
......@@ -171,6 +163,7 @@ if __name__ == "__main__":
start = time.time()
print("Training Begin".center(50, "="))
log_text.add_record(0, "Training Begin".center(50, "="))
best_valid = -1.0
for epoch in range(args.epochs):
start_e = time.time()
# print("Train Epoch {}".format(epoch).center(50, "="))
......@@ -197,9 +190,22 @@ if __name__ == "__main__":
log_valid_rocauc_epoch.add_record(epoch, valid_rocauc)
log_time.add_record(epoch, end_e-start_e)
if valid_rocauc > best_valid:
print("Update: new {}, old {}".format(valid_rocauc, best_valid))
best_valid = valid_rocauc
# fluid.io.save_vars(executor=exe, dirname='./vars/'+str(args.exp_id), main_program=val_program,
# predicate=lambda x: True)
fluid.io.save_params(executor=exe, dirname='./params/'+str(args.exp_id), main_program=val_program)
print("Test Stage".center(50, "="))
log_text.add_record(args.epochs+1, "Test Stage".center(50, "="))
# fluid.io.load_vars(executor=exe, dirname='./params/'+str(args.exp_id), main_program=val_program,
# predicate=lambda x: True)
fluid.io.load_params(executor=exe, dirname='./params/'+str(args.exp_id), main_program=val_program)
test_loss, test_rocauc = valid_epoch(
test_iter, program=val_program, exe=exe, loss=loss, score=score,
evaluator=evaluator, epoch=epoch)
......
......@@ -18,7 +18,7 @@ import paddle.fluid as fluid
from pgl import graph_wrapper
from pgl.utils import paddle_helper
__all__ = ['gcn', 'gat', 'gin', 'GaAN']
__all__ = ['gcn', 'gat', 'gin', 'gaan']
def gcn(gw, feature, hidden_size, activation, name, norm=None):
......@@ -259,87 +259,9 @@ def gin(gw,
return output
# def GaAN(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads,
# name):
# """
# This is an implementation of the paper GaAN: Gated Attention Networks for Learning
# on Large and Spatiotemporal Graphs(https://arxiv.org/abs/1803.07294)
# """
# # send function
# def send_func(src_feat, dst_feat, edge_feat):
# print("heads: {}, hidden_size_a: {}".format(heads, hidden_size_a))
# feat_query, feat_key = dst_feat['feat_query'], src_feat['feat_key']
# feat_query = fluid.layers.reshape(feat_query, [-1, heads, hidden_size_a])
# feat_key = fluid.layers.reshape(feat_key, [-1, heads, hidden_size_a])
# alpha = fluid.layers.reduce_sum(feat_key * feat_query, dim=-1)
# return {'dst_node_feat': dst_feat['node_feat'],
# 'src_node_feat': src_feat['node_feat'],
# 'feat_value': src_feat['feat_value'],
# 'alpha': alpha,
# 'feat_gate': src_feat['feat_gate']}
# # recv function
# def recv_func(message):
# dst_feat = message['dst_node_feat'] # feature of dst nodes on each edge
# src_feat = message['src_node_feat'] # feature of src nodes on each edge
# x = fluid.layers.sequence_pool(dst_feat, 'average') # feature of center nodes
# z = fluid.layers.sequence_pool(src_feat, 'average') # mean feature of neighbors
# # compute gate
# feat_gate = message['feat_gate']
# g_max = fluid.layers.sequence_pool(feat_gate, 'max')
# g = fluid.layers.concat([x, g_max, z], axis=1)
# g = fluid.layers.fc(g, heads, bias_attr=False, act='sigmoid')
# # softmax of attention coefficient
# alpha = message['alpha']
# alpha = paddle_helper.sequence_softmax(alpha)
# feat_value = message['feat_value']
# old = feat_value
# feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v])
# feat_value = fluid.layers.elementwise_mul(feat_value, alpha, axis=0)
# feat_value = fluid.layers.reshape(feat_value, [-1, heads * hidden_size_v])
# feat_value = fluid.layers.lod_reset(feat_value, old)
# feat_value = fluid.layers.sequence_pool(feat_value, 'sum')
# feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v])
# output = fluid.layers.elementwise_mul(feat_value, g, axis=0)
# output = fluid.layers.reshape(output, [-1, heads*hidden_size_v])
# output = fluid.layers.concat([x, output], axis=1)
# return output
# # project the feature of nodes into new vector spaces
# feat_key = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
# param_attr=fluid.ParamAttr(name=name + '_project_key'))
# feat_value = fluid.layers.fc(feature, hidden_size_v * heads, bias_attr=False,
# param_attr=fluid.ParamAttr(name=name + '_project_value'))
# feat_query = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
# param_attr=fluid.ParamAttr(name=name + '_project_query'))
# feat_gate = fluid.layers.fc(feature, hidden_size_m, bias_attr=False,
# param_attr=fluid.ParamAttr(name=name + '_project_gate'))
# # send stage
# msg = gw.send(send_func, nfeat_list=[('node_feat', feature),
# ('feat_key', feat_key), ('feat_value', feat_value),
# ('feat_query', feat_query), ('feat_gate', feat_gate)],
# efeat_list=None,
# )
# # recv stage
# output = gw.recv(msg, recv_func)
# # output
# output = fluid.layers.fc(output, hidden_size_o, bias_attr=False,
# param_attr=fluid.ParamAttr(name=name+'_project_output'))
# outout = fluid.layers.leaky_relu(output, alpha=0.1)
# output = fluid.layers.dropout(output, dropout_prob=0.1)
# return output
def GaAN(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads, name):
def gaan(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads, name):
"""Implementation of GaAN"""
def send_func(src_feat, dst_feat, edge_feat):
# 计算每条边上的注意力分数
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册