Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PGL
提交
9cd4d74d
P
PGL
项目概览
PaddlePaddle
/
PGL
通知
76
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
11
列表
看板
标记
里程碑
合并请求
1
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PGL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
11
Issue
11
列表
看板
标记
里程碑
合并请求
1
合并请求
1
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9cd4d74d
编写于
4月 08, 2020
作者:
W
Webbley
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gin test
上级
8246974a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
109 addition
and
11 deletion
+109
-11
pgl/layers/conv.py
pgl/layers/conv.py
+27
-11
pgl/tests/test_gin.py
pgl/tests/test_gin.py
+82
-0
未找到文件。
pgl/layers/conv.py
浏览文件 @
9cd4d74d
...
@@ -180,7 +180,13 @@ def gat(gw,
...
@@ -180,7 +180,13 @@ def gat(gw,
return
output
return
output
def
gin
(
gw
,
feature
,
name
,
init_eps
=
0.0
,
train_eps
=
False
,
apply_func
=
None
):
def
gin
(
gw
,
feature
,
hidden_size
,
activation
,
name
,
init_eps
=
0.0
,
train_eps
=
False
):
"""Implementation of Graph Isomorphism Network (GIN) layer.
"""Implementation of Graph Isomorphism Network (GIN) layer.
This is an implementation of the paper How Powerful are Graph Neural Networks?
This is an implementation of the paper How Powerful are Graph Neural Networks?
...
@@ -193,19 +199,18 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
...
@@ -193,19 +199,18 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
name: GIN layer names.
name: GIN layer names.
hidden_size: The hidden size for gin.
activation: The activation for the output.
init_eps: float, optional
init_eps: float, optional
Initial :math:`\epsilon` value, default is 0.
Initial :math:`\epsilon` value, default is 0.
train_eps: bool, optional
train_eps: bool, optional
if True, :math:`\epsilon` will be a learnable parameter.
if True, :math:`\epsilon` will be a learnable parameter.
apply_func: Callable activation function or None.
Default is None. If not None, apply this function to the updated feature.
Return:
Return:
A tensor with shape (num_nodes, output_size) where ``output_size`` is the
A tensor with shape (num_nodes, hidden_size).
output dimensionality of ``apply_func``. If ``apply_func`` is None, ``output_size``
should be the same as ``feature_size``.
"""
"""
def
send_src_copy
(
src_feat
,
dst_feat
,
edge_feat
):
def
send_src_copy
(
src_feat
,
dst_feat
,
edge_feat
):
...
@@ -214,8 +219,9 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
...
@@ -214,8 +219,9 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
epsilon
=
fluid
.
layers
.
create_parameter
(
epsilon
=
fluid
.
layers
.
create_parameter
(
shape
=
[
1
,
1
],
shape
=
[
1
,
1
],
dtype
=
"float32"
,
dtype
=
"float32"
,
attr
=
F
.
ParamAttr
(
name
=
"%s_eps"
%
name
),
attr
=
fluid
.
ParamAttr
(
name
=
"%s_eps"
%
name
),
default_initializer
=
F
.
initializer
.
ConstantInitializer
(
value
=
init_eps
))
default_initializer
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
init_eps
))
if
not
train_eps
:
if
not
train_eps
:
epsilon
.
stop_gradient
=
True
epsilon
.
stop_gradient
=
True
...
@@ -223,7 +229,17 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
...
@@ -223,7 +229,17 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
msg
=
gw
.
send
(
send_src_copy
,
nfeat_list
=
[(
"h"
,
feature
)])
msg
=
gw
.
send
(
send_src_copy
,
nfeat_list
=
[(
"h"
,
feature
)])
output
=
gw
.
recv
(
msg
,
"sum"
)
+
(
1.0
+
epsilon
)
*
feature
output
=
gw
.
recv
(
msg
,
"sum"
)
+
(
1.0
+
epsilon
)
*
feature
if
apply_func
is
not
None
:
output
=
fluid
.
layers
.
fc
(
output
,
output
=
apply_func
(
output
,
name
)
size
=
hidden_size
,
bias_attr
=
False
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"%s_w"
%
name
))
bias
=
fluid
.
layers
.
create_parameter
(
shape
=
[
hidden_size
],
dtype
=
'float32'
,
is_bias
=
True
,
attr
=
fluid
.
ParamAttr
(
name
=
"%s_b"
%
name
))
output
=
fluid
.
layers
.
elementwise_add
(
output
,
bias
,
act
=
activation
)
return
output
return
output
pgl/tests/test_gin.py
0 → 100644
浏览文件 @
9cd4d74d
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file is for testing gin layer.
"""
from
__future__
import
division
from
__future__
import
absolute_import
from
__future__
import
print_function
from
__future__
import
unicode_literals
import
unittest
import
numpy
as
np
import
paddle.fluid
as
F
import
paddle.fluid.layers
as
L
from
pgl.layers.conv
import
gin
from
pgl
import
graph
from
pgl
import
graph_wrapper
class
GinTest
(
unittest
.
TestCase
):
"""GinTest
"""
def
test_gin
(
self
):
"""test_gin
"""
np
.
random
.
seed
(
1
)
hidden_size
=
8
num_nodes
=
10
edges
=
[(
1
,
4
),
(
0
,
5
),
(
1
,
9
),
(
1
,
8
),
(
2
,
8
),
(
2
,
5
),
(
3
,
6
),
(
3
,
7
),
(
3
,
4
),
(
3
,
8
)]
inver_edges
=
[(
v
,
u
)
for
u
,
v
in
edges
]
edges
.
extend
(
inver_edges
)
node_feat
=
{
"feature"
:
np
.
random
.
rand
(
10
,
4
).
astype
(
"float32"
)}
g
=
graph
.
Graph
(
num_nodes
=
num_nodes
,
edges
=
edges
,
node_feat
=
node_feat
)
use_cuda
=
False
place
=
F
.
GPUPlace
(
0
)
if
use_cuda
else
F
.
CPUPlace
()
prog
=
F
.
Program
()
startup_prog
=
F
.
Program
()
with
F
.
program_guard
(
prog
,
startup_prog
):
gw
=
graph_wrapper
.
GraphWrapper
(
name
=
'graph'
,
place
=
place
,
node_feat
=
g
.
node_feat_info
(),
edge_feat
=
g
.
edge_feat_info
())
output
=
gin
(
gw
,
gw
.
node_feat
[
'feature'
],
hidden_size
=
hidden_size
,
activation
=
'relu'
,
name
=
'gin'
,
init_eps
=
1
,
train_eps
=
True
)
exe
=
F
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
ret
=
exe
.
run
(
prog
,
feed
=
gw
.
to_feed
(
g
),
fetch_list
=
[
output
])
self
.
assertEqual
(
ret
[
0
].
shape
[
0
],
num_nodes
)
self
.
assertEqual
(
ret
[
0
].
shape
[
1
],
hidden_size
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录