提交 9cd4d74d 编写于 作者: W Webbley

add gin test

上级 8246974a
...@@ -180,7 +180,13 @@ def gat(gw, ...@@ -180,7 +180,13 @@ def gat(gw,
return output return output
def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None): def gin(gw,
feature,
hidden_size,
activation,
name,
init_eps=0.0,
train_eps=False):
"""Implementation of Graph Isomorphism Network (GIN) layer. """Implementation of Graph Isomorphism Network (GIN) layer.
This is an implementation of the paper How Powerful are Graph Neural Networks? This is an implementation of the paper How Powerful are Graph Neural Networks?
...@@ -193,19 +199,18 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None): ...@@ -193,19 +199,18 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
name: GIN layer names. name: GIN layer names.
hidden_size: The hidden size for gin.
activation: The activation for the output.
init_eps: float, optional init_eps: float, optional
Initial :math:`\epsilon` value, default is 0. Initial :math:`\epsilon` value, default is 0.
train_eps: bool, optional train_eps: bool, optional
if True, :math:`\epsilon` will be a learnable parameter. if True, :math:`\epsilon` will be a learnable parameter.
apply_func: Callable activation function or None.
Default is None. If not None, apply this function to the updated feature.
Return: Return:
A tensor with shape (num_nodes, output_size) where ``output_size`` is the A tensor with shape (num_nodes, hidden_size).
output dimensionality of ``apply_func``. If ``apply_func`` is None, ``output_size``
should be the same as ``feature_size``.
""" """
def send_src_copy(src_feat, dst_feat, edge_feat): def send_src_copy(src_feat, dst_feat, edge_feat):
...@@ -214,8 +219,9 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None): ...@@ -214,8 +219,9 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
epsilon = fluid.layers.create_parameter( epsilon = fluid.layers.create_parameter(
shape=[1, 1], shape=[1, 1],
dtype="float32", dtype="float32",
attr=F.ParamAttr(name="%s_eps" % name), attr=fluid.ParamAttr(name="%s_eps" % name),
default_initializer=F.initializer.ConstantInitializer(value=init_eps)) default_initializer=fluid.initializer.ConstantInitializer(
value=init_eps))
if not train_eps: if not train_eps:
epsilon.stop_gradient = True epsilon.stop_gradient = True
...@@ -223,7 +229,17 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None): ...@@ -223,7 +229,17 @@ def gin(gw, feature, name, init_eps=0.0, train_eps=False, apply_func=None):
msg = gw.send(send_src_copy, nfeat_list=[("h", feature)]) msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
output = gw.recv(msg, "sum") + (1.0 + epsilon) * feature output = gw.recv(msg, "sum") + (1.0 + epsilon) * feature
if apply_func is not None: output = fluid.layers.fc(output,
output = apply_func(output, name) size=hidden_size,
bias_attr=False,
param_attr=fluid.ParamAttr(name="%s_w" % name))
bias = fluid.layers.create_parameter(
shape=[hidden_size],
dtype='float32',
is_bias=True,
attr=fluid.ParamAttr(name="%s_b" % name))
output = fluid.layers.elementwise_add(output, bias, act=activation)
return output return output
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file is for testing gin layer.
"""
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import numpy as np
import paddle.fluid as F
import paddle.fluid.layers as L
from pgl.layers.conv import gin
from pgl import graph
from pgl import graph_wrapper
class GinTest(unittest.TestCase):
"""GinTest
"""
def test_gin(self):
"""test_gin
"""
np.random.seed(1)
hidden_size = 8
num_nodes = 10
edges = [(1, 4), (0, 5), (1, 9), (1, 8), (2, 8), (2, 5), (3, 6),
(3, 7), (3, 4), (3, 8)]
inver_edges = [(v, u) for u, v in edges]
edges.extend(inver_edges)
node_feat = {"feature": np.random.rand(10, 4).astype("float32")}
g = graph.Graph(num_nodes=num_nodes, edges=edges, node_feat=node_feat)
use_cuda = False
place = F.GPUPlace(0) if use_cuda else F.CPUPlace()
prog = F.Program()
startup_prog = F.Program()
with F.program_guard(prog, startup_prog):
gw = graph_wrapper.GraphWrapper(
name='graph',
place=place,
node_feat=g.node_feat_info(),
edge_feat=g.edge_feat_info())
output = gin(gw,
gw.node_feat['feature'],
hidden_size=hidden_size,
activation='relu',
name='gin',
init_eps=1,
train_eps=True)
exe = F.Executor(place)
exe.run(startup_prog)
ret = exe.run(prog, feed=gw.to_feed(g), fetch_list=[output])
self.assertEqual(ret[0].shape[0], num_nodes)
self.assertEqual(ret[0].shape[1], hidden_size)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册