omap_hsmmc.c 50.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * (C) Copyright 2008
 * Texas Instruments, <www.ti.com>
 * Sukumar Ghorai <s-ghorai@ti.com>
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation's version 2 of
 * the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <config.h>
#include <common.h>
27
#include <cpu_func.h>
28
#include <malloc.h>
29
#include <memalign.h>
30 31 32
#include <mmc.h>
#include <part.h>
#include <i2c.h>
F
Felix Brack 已提交
33
#if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
N
Nishanth Menon 已提交
34
#include <palmas.h>
F
Felix Brack 已提交
35
#endif
36 37
#include <asm/io.h>
#include <asm/arch/mmc_host_def.h>
38 39 40 41
#ifdef CONFIG_OMAP54XX
#include <asm/arch/mux_dra7xx.h>
#include <asm/arch/dra7xx_iodelay.h>
#endif
42 43
#if !defined(CONFIG_SOC_KEYSTONE)
#include <asm/gpio.h>
44
#include <asm/arch/sys_proto.h>
45
#endif
46 47 48
#ifdef CONFIG_MMC_OMAP36XX_PINS
#include <asm/arch/mux.h>
#endif
49
#include <dm.h>
50
#include <power/regulator.h>
51
#include <thermal.h>
52 53

DECLARE_GLOBAL_DATA_PTR;
54

55 56 57 58 59 60 61 62
/* simplify defines to OMAP_HSMMC_USE_GPIO */
#if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
	(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
#define OMAP_HSMMC_USE_GPIO
#else
#undef OMAP_HSMMC_USE_GPIO
#endif

63 64 65 66
/* common definitions for all OMAPs */
#define SYSCTL_SRC	(1 << 25)
#define SYSCTL_SRD	(1 << 26)

67 68 69 70 71 72 73 74 75
#ifdef CONFIG_IODELAY_RECALIBRATION
struct omap_hsmmc_pinctrl_state {
	struct pad_conf_entry *padconf;
	int npads;
	struct iodelay_cfg_entry *iodelay;
	int niodelays;
};
#endif

76 77
struct omap_hsmmc_data {
	struct hsmmc *base_addr;
78
#if !CONFIG_IS_ENABLED(DM_MMC)
79
	struct mmc_config cfg;
80
#endif
81
	uint bus_width;
82
	uint clock;
83
	ushort last_cmd;
84
#ifdef OMAP_HSMMC_USE_GPIO
85
#if CONFIG_IS_ENABLED(DM_MMC)
86 87 88
	struct gpio_desc cd_gpio;	/* Change Detect GPIO */
	struct gpio_desc wp_gpio;	/* Write Protect GPIO */
#else
89
	int cd_gpio;
90
	int wp_gpio;
91
#endif
92 93
#endif
#if CONFIG_IS_ENABLED(DM_MMC)
94
	enum bus_mode mode;
95
#endif
96
	u8 controller_flags;
97
#ifdef CONFIG_MMC_OMAP_HS_ADMA
98 99 100
	struct omap_hsmmc_adma_desc *adma_desc_table;
	uint desc_slot;
#endif
101
	const char *hw_rev;
102 103
	struct udevice *pbias_supply;
	uint signal_voltage;
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#ifdef CONFIG_IODELAY_RECALIBRATION
	struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
	struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
	struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
	struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
	struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
	struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
	struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
	struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
	struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
#endif
};

struct omap_mmc_of_data {
	u8 controller_flags;
119 120
};

121
#ifdef CONFIG_MMC_OMAP_HS_ADMA
122 123 124 125 126
struct omap_hsmmc_adma_desc {
	u8 attr;
	u8 reserved;
	u16 len;
	u32 addr;
127 128
};

129 130 131 132 133 134 135 136 137 138 139 140 141
#define ADMA_MAX_LEN	63488

/* Decriptor table defines */
#define ADMA_DESC_ATTR_VALID		BIT(0)
#define ADMA_DESC_ATTR_END		BIT(1)
#define ADMA_DESC_ATTR_INT		BIT(2)
#define ADMA_DESC_ATTR_ACT1		BIT(4)
#define ADMA_DESC_ATTR_ACT2		BIT(5)

#define ADMA_DESC_TRANSFER_DATA		ADMA_DESC_ATTR_ACT2
#define ADMA_DESC_LINK_DESC	(ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
#endif

N
Nishanth Menon 已提交
142 143
/* If we fail after 1 second wait, something is really bad */
#define MAX_RETRY_MS	1000
144
#define MMC_TIMEOUT_MS	20
N
Nishanth Menon 已提交
145

146 147 148 149 150 151
/* DMA transfers can take a long time if a lot a data is transferred.
 * The timeout must take in account the amount of data. Let's assume
 * that the time will never exceed 333 ms per MB (in other word we assume
 * that the bandwidth is always above 3MB/s).
 */
#define DMA_TIMEOUT_PER_MB	333
152 153
#define OMAP_HSMMC_SUPPORTS_DUAL_VOLT		BIT(0)
#define OMAP_HSMMC_NO_1_8_V			BIT(1)
154
#define OMAP_HSMMC_USE_ADMA			BIT(2)
155
#define OMAP_HSMMC_REQUIRE_IODELAY		BIT(3)
156

S
Sricharan 已提交
157 158 159
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
			unsigned int siz);
160 161
static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
162
static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
B
Balaji T K 已提交
163

164 165
static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
{
166
#if CONFIG_IS_ENABLED(DM_MMC)
167 168 169 170
	return dev_get_priv(mmc->dev);
#else
	return (struct omap_hsmmc_data *)mmc->priv;
#endif
171 172 173
}
static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
{
174
#if CONFIG_IS_ENABLED(DM_MMC)
175 176 177 178 179
	struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
	return &plat->cfg;
#else
	return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
#endif
180 181
}

182
#if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
183 184
static int omap_mmc_setup_gpio_in(int gpio, const char *label)
{
S
Simon Glass 已提交
185
	int ret;
186

187
#if !CONFIG_IS_ENABLED(DM_GPIO)
S
Simon Glass 已提交
188
	if (!gpio_is_valid(gpio))
189
		return -1;
S
Simon Glass 已提交
190 191 192 193
#endif
	ret = gpio_request(gpio, label);
	if (ret)
		return ret;
194

S
Simon Glass 已提交
195 196 197
	ret = gpio_direction_input(gpio);
	if (ret)
		return ret;
198 199 200 201 202

	return gpio;
}
#endif

203
static unsigned char mmc_board_init(struct mmc *mmc)
204 205
{
#if defined(CONFIG_OMAP34XX)
206
	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
207 208
	t2_t *t2_base = (t2_t *)T2_BASE;
	struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
209
	u32 pbias_lite;
210 211 212
#ifdef CONFIG_MMC_OMAP36XX_PINS
	u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
#endif
213

214 215
	pbias_lite = readl(&t2_base->pbias_lite);
	pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
216 217 218
#ifdef CONFIG_TARGET_OMAP3_CAIRO
	/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
	pbias_lite &= ~PBIASLITEVMODE0;
219
#endif
220 221 222 223
#ifdef CONFIG_TARGET_OMAP3_LOGIC
	/* For Logic PD board, 1.8V bias to go enable gpio127 for mmc_cd */
	pbias_lite &= ~PBIASLITEVMODE1;
#endif
224 225 226 227 228 229
#ifdef CONFIG_MMC_OMAP36XX_PINS
	if (get_cpu_family() == CPU_OMAP36XX) {
		/* Disable extended drain IO before changing PBIAS */
		wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
		writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
	}
230
#endif
231
	writel(pbias_lite, &t2_base->pbias_lite);
232

233
	writel(pbias_lite | PBIASLITEPWRDNZ1 |
234 235 236
		PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
		&t2_base->pbias_lite);

237 238 239 240 241 242 243
#ifdef CONFIG_MMC_OMAP36XX_PINS
	if (get_cpu_family() == CPU_OMAP36XX)
		/* Enable extended drain IO after changing PBIAS */
		writel(wkup_ctrl |
				OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
				OMAP34XX_CTRL_WKUP_CTRL);
#endif
244 245 246 247 248 249
	writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
		&t2_base->devconf0);

	writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
		&t2_base->devconf1);

250
	/* Change from default of 52MHz to 26MHz if necessary */
251
	if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
252 253 254
		writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
			&t2_base->ctl_prog_io1);

255 256 257 258 259 260 261 262 263
	writel(readl(&prcm_base->fclken1_core) |
		EN_MMC1 | EN_MMC2 | EN_MMC3,
		&prcm_base->fclken1_core);

	writel(readl(&prcm_base->iclken1_core) |
		EN_MMC1 | EN_MMC2 | EN_MMC3,
		&prcm_base->iclken1_core);
#endif

264 265
#if (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) &&\
	!CONFIG_IS_ENABLED(DM_REGULATOR)
B
Balaji T K 已提交
266
	/* PBIAS config needed for MMC1 only */
267
	if (mmc_get_blk_desc(mmc)->devnum == 0)
268
		vmmc_pbias_config(LDO_VOLT_3V3);
B
Balaji T K 已提交
269
#endif
270 271 272 273

	return 0;
}

S
Sricharan 已提交
274
void mmc_init_stream(struct hsmmc *mmc_base)
275
{
N
Nishanth Menon 已提交
276
	ulong start;
277 278 279 280

	writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);

	writel(MMC_CMD0, &mmc_base->cmd);
N
Nishanth Menon 已提交
281 282 283 284 285 286 287
	start = get_timer(0);
	while (!(readl(&mmc_base->stat) & CC_MASK)) {
		if (get_timer(0) - start > MAX_RETRY_MS) {
			printf("%s: timedout waiting for cc!\n", __func__);
			return;
		}
	}
288 289 290 291
	writel(CC_MASK, &mmc_base->stat)
		;
	writel(MMC_CMD0, &mmc_base->cmd)
		;
N
Nishanth Menon 已提交
292 293 294 295 296 297 298
	start = get_timer(0);
	while (!(readl(&mmc_base->stat) & CC_MASK)) {
		if (get_timer(0) - start > MAX_RETRY_MS) {
			printf("%s: timedout waiting for cc2!\n", __func__);
			return;
		}
	}
299 300 301
	writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
}

302
#if CONFIG_IS_ENABLED(DM_MMC)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#ifdef CONFIG_IODELAY_RECALIBRATION
static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	struct omap_hsmmc_pinctrl_state *pinctrl_state;

	switch (priv->mode) {
	case MMC_HS_200:
		pinctrl_state = priv->hs200_1_8v_pinctrl_state;
		break;
	case UHS_SDR104:
		pinctrl_state = priv->sdr104_pinctrl_state;
		break;
	case UHS_SDR50:
		pinctrl_state = priv->sdr50_pinctrl_state;
		break;
	case UHS_DDR50:
		pinctrl_state = priv->ddr50_pinctrl_state;
		break;
	case UHS_SDR25:
		pinctrl_state = priv->sdr25_pinctrl_state;
		break;
	case UHS_SDR12:
		pinctrl_state = priv->sdr12_pinctrl_state;
		break;
	case SD_HS:
	case MMC_HS:
	case MMC_HS_52:
		pinctrl_state = priv->hs_pinctrl_state;
		break;
	case MMC_DDR_52:
		pinctrl_state = priv->ddr_1_8v_pinctrl_state;
	default:
		pinctrl_state = priv->default_pinctrl_state;
		break;
	}

340 341 342
	if (!pinctrl_state)
		pinctrl_state = priv->default_pinctrl_state;

343 344 345 346 347 348 349 350 351 352 353 354 355
	if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
		if (pinctrl_state->iodelay)
			late_recalibrate_iodelay(pinctrl_state->padconf,
						 pinctrl_state->npads,
						 pinctrl_state->iodelay,
						 pinctrl_state->niodelays);
		else
			do_set_mux32((*ctrl)->control_padconf_core_base,
				     pinctrl_state->padconf,
				     pinctrl_state->npads);
	}
}
#endif
356 357 358 359 360 361 362 363
static void omap_hsmmc_set_timing(struct mmc *mmc)
{
	u32 val;
	struct hsmmc *mmc_base;
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);

	mmc_base = priv->base_addr;

364
	omap_hsmmc_stop_clock(mmc_base);
365 366 367 368
	val = readl(&mmc_base->ac12);
	val &= ~AC12_UHSMC_MASK;
	priv->mode = mmc->selected_mode;

369 370 371 372 373
	if (mmc_is_mode_ddr(priv->mode))
		writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
	else
		writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	switch (priv->mode) {
	case MMC_HS_200:
	case UHS_SDR104:
		val |= AC12_UHSMC_SDR104;
		break;
	case UHS_SDR50:
		val |= AC12_UHSMC_SDR50;
		break;
	case MMC_DDR_52:
	case UHS_DDR50:
		val |= AC12_UHSMC_DDR50;
		break;
	case SD_HS:
	case MMC_HS_52:
	case UHS_SDR25:
		val |= AC12_UHSMC_SDR25;
		break;
	case MMC_LEGACY:
	case MMC_HS:
	case SD_LEGACY:
	case UHS_SDR12:
		val |= AC12_UHSMC_SDR12;
		break;
	default:
		val |= AC12_UHSMC_RES;
		break;
	}
	writel(val, &mmc_base->ac12);
402 403 404 405 406

#ifdef CONFIG_IODELAY_RECALIBRATION
	omap_hsmmc_io_recalibrate(mmc);
#endif
	omap_hsmmc_start_clock(mmc_base);
407 408
}

409
static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
410 411 412
{
	struct hsmmc *mmc_base;
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
413
	u32 hctl, ac12;
414 415 416

	mmc_base = priv->base_addr;

417 418
	hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
	ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
419

420 421
	switch (signal_voltage) {
	case MMC_SIGNAL_VOLTAGE_330:
422
		hctl |= SDVS_3V3;
423
		break;
424 425 426
	case MMC_SIGNAL_VOLTAGE_180:
		hctl |= SDVS_1V8;
		ac12 |= AC12_V1V8_SIGEN;
427 428 429
		break;
	}

430 431
	writel(hctl, &mmc_base->hctl);
	writel(ac12, &mmc_base->ac12);
432 433
}

434
static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout_us)
435 436 437 438 439 440 441 442 443 444 445
{
	int ret = -ETIMEDOUT;
	u32 con;
	bool dat0_high;
	bool target_dat0_high = !!state;
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
	struct hsmmc *mmc_base = priv->base_addr;

	con = readl(&mmc_base->con);
	writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);

446 447
	timeout_us = DIV_ROUND_UP(timeout_us, 10); /* check every 10 us. */
	while (timeout_us--) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
		if (dat0_high == target_dat0_high) {
			ret = 0;
			break;
		}
		udelay(10);
	}
	writel(con, &mmc_base->con);

	return ret;
}

#if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
#if CONFIG_IS_ENABLED(DM_REGULATOR)
static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
{
	int ret = 0;
	int uV = mV * 1000;

	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);

	if (!mmc->vqmmc_supply)
		return 0;

	/* Disable PBIAS */
473 474
	ret = regulator_set_enable_if_allowed(priv->pbias_supply, false);
	if (ret)
475 476 477
		return ret;

	/* Turn off IO voltage */
478 479
	ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, false);
	if (ret)
480 481 482 483 484 485
		return ret;
	/* Program a new IO voltage value */
	ret = regulator_set_value(mmc->vqmmc_supply, uV);
	if (ret)
		return ret;
	/* Turn on IO voltage */
486 487
	ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, true);
	if (ret)
488 489 490 491 492 493 494
		return ret;

	/* Program PBIAS voltage*/
	ret = regulator_set_value(priv->pbias_supply, uV);
	if (ret && ret != -ENOSYS)
		return ret;
	/* Enable PBIAS */
495 496
	ret = regulator_set_enable_if_allowed(priv->pbias_supply, true);
	if (ret)
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
		return ret;

	return 0;
}
#endif

static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	struct hsmmc *mmc_base = priv->base_addr;
	int mv = mmc_voltage_to_mv(mmc->signal_voltage);
	u32 capa_mask;
	__maybe_unused u8 palmas_ldo_volt;
	u32 val;

	if (mv < 0)
		return -EINVAL;

	if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
516 517 518
		mv = 3300;
		capa_mask = VS33_3V3SUP;
		palmas_ldo_volt = LDO_VOLT_3V3;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	} else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
		capa_mask = VS18_1V8SUP;
		palmas_ldo_volt = LDO_VOLT_1V8;
	} else {
		return -EOPNOTSUPP;
	}

	val = readl(&mmc_base->capa);
	if (!(val & capa_mask))
		return -EOPNOTSUPP;

	priv->signal_voltage = mmc->signal_voltage;

	omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);

#if CONFIG_IS_ENABLED(DM_REGULATOR)
	return omap_hsmmc_set_io_regulator(mmc, mv);
#elif (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) && \
	defined(CONFIG_PALMAS_POWER)
	if (mmc_get_blk_desc(mmc)->devnum == 0)
		vmmc_pbias_config(palmas_ldo_volt);
	return 0;
#else
	return 0;
#endif
}
#endif

static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
548 549 550 551 552 553 554 555 556
{
	struct hsmmc *mmc_base;
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	u32 val;

	mmc_base = priv->base_addr;
	val = readl(&mmc_base->capa);

	if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
557
		val |= (VS33_3V3SUP | VS18_1V8SUP);
558
	} else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
559
		val |= VS33_3V3SUP;
560 561 562
		val &= ~VS18_1V8SUP;
	} else {
		val |= VS18_1V8SUP;
563
		val &= ~VS33_3V3SUP;
564 565 566
	}

	writel(val, &mmc_base->capa);
567 568

	return val;
569
}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

#ifdef MMC_SUPPORTS_TUNING
static void omap_hsmmc_disable_tuning(struct mmc *mmc)
{
	struct hsmmc *mmc_base;
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	u32 val;

	mmc_base = priv->base_addr;
	val = readl(&mmc_base->ac12);
	val &= ~(AC12_SCLK_SEL);
	writel(val, &mmc_base->ac12);

	val = readl(&mmc_base->dll);
	val &= ~(DLL_FORCE_VALUE | DLL_SWT);
	writel(val, &mmc_base->dll);
}

static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
{
	int i;
	struct hsmmc *mmc_base;
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	u32 val;

	mmc_base = priv->base_addr;
	val = readl(&mmc_base->dll);
	val |= DLL_FORCE_VALUE;
	val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
	val |= (count << DLL_FORCE_SR_C_SHIFT);
	writel(val, &mmc_base->dll);

	val |= DLL_CALIB;
	writel(val, &mmc_base->dll);
	for (i = 0; i < 1000; i++) {
		if (readl(&mmc_base->dll) & DLL_CALIB)
			break;
	}
	val &= ~DLL_CALIB;
	writel(val, &mmc_base->dll);
}

static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
{
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	struct mmc *mmc = upriv->mmc;
	struct hsmmc *mmc_base;
	u32 val;
	u8 cur_match, prev_match = 0;
	int ret;
	u32 phase_delay = 0;
	u32 start_window = 0, max_window = 0;
	u32 length = 0, max_len = 0;
624 625 626 627
	bool single_point_failure = false;
	struct udevice *thermal_dev;
	int temperature;
	int i;
628 629 630 631 632 633 634 635 636 637

	mmc_base = priv->base_addr;
	val = readl(&mmc_base->capa2);

	/* clock tuning is not needed for upto 52MHz */
	if (!((mmc->selected_mode == MMC_HS_200) ||
	      (mmc->selected_mode == UHS_SDR104) ||
	      ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
		return 0;

638 639 640 641 642 643 644 645 646 647
	ret = uclass_first_device(UCLASS_THERMAL, &thermal_dev);
	if (ret) {
		printf("Couldn't get thermal device for tuning\n");
		return ret;
	}
	ret = thermal_get_temp(thermal_dev, &temperature);
	if (ret) {
		printf("Couldn't get temperature for tuning\n");
		return ret;
	}
648 649 650
	val = readl(&mmc_base->dll);
	val |= DLL_SWT;
	writel(val, &mmc_base->dll);
651 652 653 654 655 656

	/*
	 * Stage 1: Search for a maximum pass window ignoring any
	 * any single point failures. If the tuning value ends up
	 * near it, move away from it in stage 2 below
	 */
657 658 659 660 661 662 663 664
	while (phase_delay <= MAX_PHASE_DELAY) {
		omap_hsmmc_set_dll(mmc, phase_delay);

		cur_match = !mmc_send_tuning(mmc, opcode, NULL);

		if (cur_match) {
			if (prev_match) {
				length++;
665 666 667 668
			} else if (single_point_failure) {
				/* ignore single point failure */
				length++;
				single_point_failure = false;
669 670 671 672
			} else {
				start_window = phase_delay;
				length = 1;
			}
673 674
		} else {
			single_point_failure = prev_match;
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		}

		if (length > max_len) {
			max_window = start_window;
			max_len = length;
		}

		prev_match = cur_match;
		phase_delay += 4;
	}

	if (!max_len) {
		ret = -EIO;
		goto tuning_error;
	}

	val = readl(&mmc_base->ac12);
	if (!(val & AC12_SCLK_SEL)) {
		ret = -EIO;
		goto tuning_error;
	}
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	/*
	 * Assign tuning value as a ratio of maximum pass window based
	 * on temperature
	 */
	if (temperature < -20000)
		phase_delay = min(max_window + 4 * max_len - 24,
				  max_window +
				  DIV_ROUND_UP(13 * max_len, 16) * 4);
	else if (temperature < 20000)
		phase_delay = max_window + DIV_ROUND_UP(9 * max_len, 16) * 4;
	else if (temperature < 40000)
		phase_delay = max_window + DIV_ROUND_UP(8 * max_len, 16) * 4;
	else if (temperature < 70000)
		phase_delay = max_window + DIV_ROUND_UP(7 * max_len, 16) * 4;
	else if (temperature < 90000)
		phase_delay = max_window + DIV_ROUND_UP(5 * max_len, 16) * 4;
	else if (temperature < 120000)
		phase_delay = max_window + DIV_ROUND_UP(4 * max_len, 16) * 4;
	else
		phase_delay = max_window + DIV_ROUND_UP(3 * max_len, 16) * 4;

	/*
	 * Stage 2: Search for a single point failure near the chosen tuning
	 * value in two steps. First in the +3 to +10 range and then in the
	 * +2 to -10 range. If found, move away from it in the appropriate
	 * direction by the appropriate amount depending on the temperature.
	 */
	for (i = 3; i <= 10; i++) {
		omap_hsmmc_set_dll(mmc, phase_delay + i);
		if (mmc_send_tuning(mmc, opcode, NULL)) {
			if (temperature < 10000)
				phase_delay += i + 6;
			else if (temperature < 20000)
				phase_delay += i - 12;
			else if (temperature < 70000)
				phase_delay += i - 8;
			else if (temperature < 90000)
				phase_delay += i - 6;
			else
				phase_delay += i - 6;

			goto single_failure_found;
		}
	}

	for (i = 2; i >= -10; i--) {
		omap_hsmmc_set_dll(mmc, phase_delay + i);
		if (mmc_send_tuning(mmc, opcode, NULL)) {
			if (temperature < 10000)
				phase_delay += i + 12;
			else if (temperature < 20000)
				phase_delay += i + 8;
			else if (temperature < 70000)
				phase_delay += i + 8;
			else if (temperature < 90000)
				phase_delay += i + 10;
			else
				phase_delay += i + 12;

			goto single_failure_found;
		}
	}

single_failure_found:
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

	omap_hsmmc_set_dll(mmc, phase_delay);

	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);

	return 0;

tuning_error:

	omap_hsmmc_disable_tuning(mmc);
	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);

	return ret;
}
#endif
777 778
#endif

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	struct hsmmc *mmc_base = priv->base_addr;
	u32 irq_mask = INT_EN_MASK;

	/*
	 * TODO: Errata i802 indicates only DCRC interrupts can occur during
	 * tuning procedure and DCRC should be disabled. But see occurences
	 * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
	 * interrupts occur along with BRR, so the data is actually in the
	 * buffer. It has to be debugged why these interrutps occur
	 */
	if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
		irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);

	writel(irq_mask, &mmc_base->ie);
}

798
static int omap_hsmmc_init_setup(struct mmc *mmc)
799
{
800
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
801
	struct hsmmc *mmc_base;
802 803
	unsigned int reg_val;
	unsigned int dsor;
N
Nishanth Menon 已提交
804
	ulong start;
805

806
	mmc_base = priv->base_addr;
B
Balaji T K 已提交
807
	mmc_board_init(mmc);
808 809 810

	writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
		&mmc_base->sysconfig);
N
Nishanth Menon 已提交
811 812 813 814
	start = get_timer(0);
	while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
		if (get_timer(0) - start > MAX_RETRY_MS) {
			printf("%s: timedout waiting for cc2!\n", __func__);
815
			return -ETIMEDOUT;
N
Nishanth Menon 已提交
816 817
		}
	}
818
	writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
N
Nishanth Menon 已提交
819 820 821 822 823
	start = get_timer(0);
	while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
		if (get_timer(0) - start > MAX_RETRY_MS) {
			printf("%s: timedout waiting for softresetall!\n",
				__func__);
824
			return -ETIMEDOUT;
N
Nishanth Menon 已提交
825 826
		}
	}
827
#ifdef CONFIG_MMC_OMAP_HS_ADMA
828 829 830 831
	reg_val = readl(&mmc_base->hl_hwinfo);
	if (reg_val & MADMA_EN)
		priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
#endif
832 833

#if CONFIG_IS_ENABLED(DM_MMC)
834
	reg_val = omap_hsmmc_set_capabilities(mmc);
835
	omap_hsmmc_conf_bus_power(mmc, (reg_val & VS33_3V3SUP) ?
836
			  MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
837
#else
838
	writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
839
	writel(readl(&mmc_base->capa) | VS33_3V3SUP | VS18_1V8SUP,
840
		&mmc_base->capa);
841
#endif
842 843 844 845 846 847 848 849 850

	reg_val = readl(&mmc_base->con) & RESERVED_MASK;

	writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
		MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
		HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);

	dsor = 240;
	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
851
		(ICE_STOP | DTO_15THDTO));
852 853
	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
		(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
N
Nishanth Menon 已提交
854 855 856 857
	start = get_timer(0);
	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
		if (get_timer(0) - start > MAX_RETRY_MS) {
			printf("%s: timedout waiting for ics!\n", __func__);
858
			return -ETIMEDOUT;
N
Nishanth Menon 已提交
859 860
		}
	}
861 862 863 864
	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);

	writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);

865
	mmc_enable_irq(mmc, NULL);
866 867

#if !CONFIG_IS_ENABLED(DM_MMC)
868
	mmc_init_stream(mmc_base);
869
#endif
870 871 872 873

	return 0;
}

874 875 876 877 878 879 880 881 882 883 884 885
/*
 * MMC controller internal finite state machine reset
 *
 * Used to reset command or data internal state machines, using respectively
 * SRC or SRD bit of SYSCTL register
 */
static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
{
	ulong start;

	mmc_reg_out(&mmc_base->sysctl, bit, bit);

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	/*
	 * CMD(DAT) lines reset procedures are slightly different
	 * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
	 * According to OMAP3 TRM:
	 * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
	 * returns to 0x0.
	 * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
	 * procedure steps must be as follows:
	 * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
	 *    MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
	 * 2. Poll the SRC(SRD) bit until it is set to 0x1.
	 * 3. Wait until the SRC (SRD) bit returns to 0x0
	 *    (reset procedure is completed).
	 */
#if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
901
	defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
902 903 904
	if (!(readl(&mmc_base->sysctl) & bit)) {
		start = get_timer(0);
		while (!(readl(&mmc_base->sysctl) & bit)) {
905
			if (get_timer(0) - start > MMC_TIMEOUT_MS)
906 907 908 909
				return;
		}
	}
#endif
910 911 912 913 914 915 916 917 918
	start = get_timer(0);
	while ((readl(&mmc_base->sysctl) & bit) != 0) {
		if (get_timer(0) - start > MAX_RETRY_MS) {
			printf("%s: timedout waiting for sysctl %x to clear\n",
				__func__, bit);
			return;
		}
	}
}
919

920
#ifdef CONFIG_MMC_OMAP_HS_ADMA
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	struct omap_hsmmc_adma_desc *desc;
	u8 attr;

	desc = &priv->adma_desc_table[priv->desc_slot];

	attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
	if (!end)
		priv->desc_slot++;
	else
		attr |= ADMA_DESC_ATTR_END;

	desc->len = len;
	desc->addr = (u32)buf;
	desc->reserved = 0;
	desc->attr = attr;
}

static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
					  struct mmc_data *data)
{
	uint total_len = data->blocksize * data->blocks;
	uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	int i = desc_count;
	char *buf;

	priv->desc_slot = 0;
	priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
				memalign(ARCH_DMA_MINALIGN, desc_count *
				sizeof(struct omap_hsmmc_adma_desc));

	if (data->flags & MMC_DATA_READ)
		buf = data->dest;
	else
		buf = (char *)data->src;

	while (--i) {
		omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
		buf += ADMA_MAX_LEN;
		total_len -= ADMA_MAX_LEN;
	}

	omap_hsmmc_adma_desc(mmc, buf, total_len, true);

	flush_dcache_range((long)priv->adma_desc_table,
			   (long)priv->adma_desc_table +
			   ROUND(desc_count *
			   sizeof(struct omap_hsmmc_adma_desc),
			   ARCH_DMA_MINALIGN));
}

static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
{
	struct hsmmc *mmc_base;
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	u32 val;
	char *buf;

	mmc_base = priv->base_addr;
	omap_hsmmc_prepare_adma_table(mmc, data);

	if (data->flags & MMC_DATA_READ)
		buf = data->dest;
	else
		buf = (char *)data->src;

	val = readl(&mmc_base->hctl);
	val |= DMA_SELECT;
	writel(val, &mmc_base->hctl);

	val = readl(&mmc_base->con);
	val |= DMA_MASTER;
	writel(val, &mmc_base->con);

	writel((u32)priv->adma_desc_table, &mmc_base->admasal);

	flush_dcache_range((u32)buf,
			   (u32)buf +
			   ROUND(data->blocksize * data->blocks,
				 ARCH_DMA_MINALIGN));
}

static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
{
	struct hsmmc *mmc_base;
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	u32 val;

	mmc_base = priv->base_addr;

	val = readl(&mmc_base->con);
	val &= ~DMA_MASTER;
	writel(val, &mmc_base->con);

	val = readl(&mmc_base->hctl);
	val &= ~DMA_SELECT;
	writel(val, &mmc_base->hctl);

	kfree(priv->adma_desc_table);
}
#else
#define omap_hsmmc_adma_desc
#define omap_hsmmc_prepare_adma_table
#define omap_hsmmc_prepare_data
#define omap_hsmmc_dma_cleanup
#endif

1031
#if !CONFIG_IS_ENABLED(DM_MMC)
1032
static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
1033 1034
			struct mmc_data *data)
{
1035
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1036 1037 1038 1039 1040
#else
static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
			struct mmc_data *data)
{
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1041 1042
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	struct mmc *mmc = upriv->mmc;
1043
#endif
1044
	struct hsmmc *mmc_base;
1045
	unsigned int flags, mmc_stat;
N
Nishanth Menon 已提交
1046
	ulong start;
1047
	priv->last_cmd = cmd->cmdidx;
1048

1049
	mmc_base = priv->base_addr;
1050 1051 1052 1053

	if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
		return 0;

N
Nishanth Menon 已提交
1054
	start = get_timer(0);
T
Tom Rini 已提交
1055
	while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
N
Nishanth Menon 已提交
1056
		if (get_timer(0) - start > MAX_RETRY_MS) {
T
Tom Rini 已提交
1057 1058
			printf("%s: timedout waiting on cmd inhibit to clear\n",
					__func__);
1059 1060
			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1061
			return -ETIMEDOUT;
N
Nishanth Menon 已提交
1062 1063
		}
	}
1064
	writel(0xFFFFFFFF, &mmc_base->stat);
1065 1066 1067
	if (readl(&mmc_base->stat)) {
		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
N
Nishanth Menon 已提交
1068
	}
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	/*
	 * CMDREG
	 * CMDIDX[13:8]	: Command index
	 * DATAPRNT[5]	: Data Present Select
	 * ENCMDIDX[4]	: Command Index Check Enable
	 * ENCMDCRC[3]	: Command CRC Check Enable
	 * RSPTYP[1:0]
	 *	00 = No Response
	 *	01 = Length 136
	 *	10 = Length 48
	 *	11 = Length 48 Check busy after response
	 */
	/* Delay added before checking the status of frq change
	 * retry not supported by mmc.c(core file)
	 */
	if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
		udelay(50000); /* wait 50 ms */

	if (!(cmd->resp_type & MMC_RSP_PRESENT))
		flags = 0;
	else if (cmd->resp_type & MMC_RSP_136)
		flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
	else if (cmd->resp_type & MMC_RSP_BUSY)
		flags = RSP_TYPE_LGHT48B;
	else
		flags = RSP_TYPE_LGHT48;

	/* enable default flags */
	flags =	flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
1099 1100
			MSBS_SGLEBLK);
	flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
1101 1102 1103 1104 1105 1106 1107 1108 1109

	if (cmd->resp_type & MMC_RSP_CRC)
		flags |= CCCE_CHECK;
	if (cmd->resp_type & MMC_RSP_OPCODE)
		flags |= CICE_CHECK;

	if (data) {
		if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
			 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
1110
			flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
			data->blocksize = 512;
			writel(data->blocksize | (data->blocks << 16),
							&mmc_base->blk);
		} else
			writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);

		if (data->flags & MMC_DATA_READ)
			flags |= (DP_DATA | DDIR_READ);
		else
			flags |= (DP_DATA | DDIR_WRITE);
1121

1122
#ifdef CONFIG_MMC_OMAP_HS_ADMA
1123 1124 1125 1126 1127 1128
		if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
		    !mmc_is_tuning_cmd(cmd->cmdidx)) {
			omap_hsmmc_prepare_data(mmc, data);
			flags |= DE_ENABLE;
		}
#endif
1129 1130
	}

1131 1132
	mmc_enable_irq(mmc, cmd);

1133
	writel(cmd->cmdarg, &mmc_base->arg);
1134
	udelay(20);		/* To fix "No status update" error on eMMC */
1135 1136
	writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);

N
Nishanth Menon 已提交
1137
	start = get_timer(0);
1138 1139
	do {
		mmc_stat = readl(&mmc_base->stat);
1140
		if (get_timer(start) > MAX_RETRY_MS) {
N
Nishanth Menon 已提交
1141
			printf("%s : timeout: No status update\n", __func__);
1142
			return -ETIMEDOUT;
N
Nishanth Menon 已提交
1143 1144
		}
	} while (!mmc_stat);
1145

1146 1147
	if ((mmc_stat & IE_CTO) != 0) {
		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1148
		return -ETIMEDOUT;
1149
	} else if ((mmc_stat & ERRI_MASK) != 0)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		return -1;

	if (mmc_stat & CC_MASK) {
		writel(CC_MASK, &mmc_base->stat);
		if (cmd->resp_type & MMC_RSP_PRESENT) {
			if (cmd->resp_type & MMC_RSP_136) {
				/* response type 2 */
				cmd->response[3] = readl(&mmc_base->rsp10);
				cmd->response[2] = readl(&mmc_base->rsp32);
				cmd->response[1] = readl(&mmc_base->rsp54);
				cmd->response[0] = readl(&mmc_base->rsp76);
			} else
				/* response types 1, 1b, 3, 4, 5, 6 */
				cmd->response[0] = readl(&mmc_base->rsp10);
		}
	}

1167
#ifdef CONFIG_MMC_OMAP_HS_ADMA
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
	    !mmc_is_tuning_cmd(cmd->cmdidx)) {
		u32 sz_mb, timeout;

		if (mmc_stat & IE_ADMAE) {
			omap_hsmmc_dma_cleanup(mmc);
			return -EIO;
		}

		sz_mb = DIV_ROUND_UP(data->blocksize *  data->blocks, 1 << 20);
		timeout = sz_mb * DMA_TIMEOUT_PER_MB;
		if (timeout < MAX_RETRY_MS)
			timeout = MAX_RETRY_MS;

		start = get_timer(0);
		do {
			mmc_stat = readl(&mmc_base->stat);
			if (mmc_stat & TC_MASK) {
				writel(readl(&mmc_base->stat) | TC_MASK,
				       &mmc_base->stat);
				break;
			}
			if (get_timer(start) > timeout) {
				printf("%s : DMA timeout: No status update\n",
				       __func__);
				return -ETIMEDOUT;
			}
		} while (1);

		omap_hsmmc_dma_cleanup(mmc);
		return 0;
	}
#endif

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	if (data && (data->flags & MMC_DATA_READ)) {
		mmc_read_data(mmc_base,	data->dest,
				data->blocksize * data->blocks);
	} else if (data && (data->flags & MMC_DATA_WRITE)) {
		mmc_write_data(mmc_base, data->src,
				data->blocksize * data->blocks);
	}
	return 0;
}

S
Sricharan 已提交
1212
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
{
	unsigned int *output_buf = (unsigned int *)buf;
	unsigned int mmc_stat;
	unsigned int count;

	/*
	 * Start Polled Read
	 */
	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
	count /= 4;

	while (size) {
N
Nishanth Menon 已提交
1225
		ulong start = get_timer(0);
1226 1227
		do {
			mmc_stat = readl(&mmc_base->stat);
N
Nishanth Menon 已提交
1228 1229 1230
			if (get_timer(0) - start > MAX_RETRY_MS) {
				printf("%s: timedout waiting for status!\n",
						__func__);
1231
				return -ETIMEDOUT;
N
Nishanth Menon 已提交
1232
			}
1233 1234
		} while (mmc_stat == 0);

1235 1236 1237
		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		if ((mmc_stat & ERRI_MASK) != 0)
			return 1;

		if (mmc_stat & BRR_MASK) {
			unsigned int k;

			writel(readl(&mmc_base->stat) | BRR_MASK,
				&mmc_base->stat);
			for (k = 0; k < count; k++) {
				*output_buf = readl(&mmc_base->data);
				output_buf++;
			}
			size -= (count*4);
		}

		if (mmc_stat & BWR_MASK)
			writel(readl(&mmc_base->stat) | BWR_MASK,
				&mmc_base->stat);

		if (mmc_stat & TC_MASK) {
			writel(readl(&mmc_base->stat) | TC_MASK,
				&mmc_base->stat);
			break;
		}
	}
	return 0;
}

1266
#if CONFIG_IS_ENABLED(MMC_WRITE)
S
Sricharan 已提交
1267
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1268
			  unsigned int size)
1269 1270 1271 1272 1273 1274
{
	unsigned int *input_buf = (unsigned int *)buf;
	unsigned int mmc_stat;
	unsigned int count;

	/*
1275
	 * Start Polled Write
1276 1277 1278 1279 1280
	 */
	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
	count /= 4;

	while (size) {
N
Nishanth Menon 已提交
1281
		ulong start = get_timer(0);
1282 1283
		do {
			mmc_stat = readl(&mmc_base->stat);
N
Nishanth Menon 已提交
1284 1285 1286
			if (get_timer(0) - start > MAX_RETRY_MS) {
				printf("%s: timedout waiting for status!\n",
						__func__);
1287
				return -ETIMEDOUT;
N
Nishanth Menon 已提交
1288
			}
1289 1290
		} while (mmc_stat == 0);

1291 1292 1293
		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		if ((mmc_stat & ERRI_MASK) != 0)
			return 1;

		if (mmc_stat & BWR_MASK) {
			unsigned int k;

			writel(readl(&mmc_base->stat) | BWR_MASK,
					&mmc_base->stat);
			for (k = 0; k < count; k++) {
				writel(*input_buf, &mmc_base->data);
				input_buf++;
			}
			size -= (count*4);
		}

		if (mmc_stat & BRR_MASK)
			writel(readl(&mmc_base->stat) | BRR_MASK,
				&mmc_base->stat);

		if (mmc_stat & TC_MASK) {
			writel(readl(&mmc_base->stat) | TC_MASK,
				&mmc_base->stat);
			break;
		}
	}
	return 0;
}
1321 1322 1323 1324 1325 1326 1327
#else
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
			  unsigned int size)
{
	return -ENOTSUPP;
}
#endif
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
{
	writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
}

static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
{
	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
}

static void omap_hsmmc_set_clock(struct mmc *mmc)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	struct hsmmc *mmc_base;
	unsigned int dsor = 0;
	ulong start;

	mmc_base = priv->base_addr;
	omap_hsmmc_stop_clock(mmc_base);

	/* TODO: Is setting DTO required here? */
	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
		    (ICE_STOP | DTO_15THDTO));

	if (mmc->clock != 0) {
		dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
		if (dsor > CLKD_MAX)
			dsor = CLKD_MAX;
	} else {
		dsor = CLKD_MAX;
	}

	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
		    (dsor << CLKD_OFFSET) | ICE_OSCILLATE);

	start = get_timer(0);
	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
		if (get_timer(0) - start > MAX_RETRY_MS) {
			printf("%s: timedout waiting for ics!\n", __func__);
			return;
		}
	}

1371 1372
	priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
	mmc->clock = priv->clock;
1373 1374 1375
	omap_hsmmc_start_clock(mmc_base);
}

1376
static void omap_hsmmc_set_bus_width(struct mmc *mmc)
1377
{
1378
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1379
	struct hsmmc *mmc_base;
1380

1381
	mmc_base = priv->base_addr;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	/* configue bus width */
	switch (mmc->bus_width) {
	case 8:
		writel(readl(&mmc_base->con) | DTW_8_BITMODE,
			&mmc_base->con);
		break;

	case 4:
		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
			&mmc_base->con);
		writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
			&mmc_base->hctl);
		break;

	case 1:
	default:
		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
			&mmc_base->con);
		writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
			&mmc_base->hctl);
		break;
	}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	priv->bus_width = mmc->bus_width;
}

#if !CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_set_ios(struct mmc *mmc)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
#else
static int omap_hsmmc_set_ios(struct udevice *dev)
{
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	struct mmc *mmc = upriv->mmc;
#endif
1419
	struct hsmmc *mmc_base = priv->base_addr;
1420
	int ret = 0;
1421 1422 1423 1424

	if (priv->bus_width != mmc->bus_width)
		omap_hsmmc_set_bus_width(mmc);

1425 1426
	if (priv->clock != mmc->clock)
		omap_hsmmc_set_clock(mmc);
1427

1428 1429 1430 1431 1432
	if (mmc->clk_disable)
		omap_hsmmc_stop_clock(mmc_base);
	else
		omap_hsmmc_start_clock(mmc_base);

1433 1434 1435
#if CONFIG_IS_ENABLED(DM_MMC)
	if (priv->mode != mmc->selected_mode)
		omap_hsmmc_set_timing(mmc);
1436 1437 1438 1439

#if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
	if (priv->signal_voltage != mmc->signal_voltage)
		ret = omap_hsmmc_set_signal_voltage(mmc);
1440
#endif
1441 1442
#endif
	return ret;
1443 1444
}

1445
#ifdef OMAP_HSMMC_USE_GPIO
1446
#if CONFIG_IS_ENABLED(DM_MMC)
1447
static int omap_hsmmc_getcd(struct udevice *dev)
1448
{
1449 1450
	int value = -1;
#if CONFIG_IS_ENABLED(DM_GPIO)
1451
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1452
	value = dm_gpio_get_value(&priv->cd_gpio);
1453
#endif
1454 1455 1456 1457 1458 1459 1460
	/* if no CD return as 1 */
	if (value < 0)
		return 1;

	return value;
}

1461
static int omap_hsmmc_getwp(struct udevice *dev)
1462
{
1463 1464
	int value = 0;
#if CONFIG_IS_ENABLED(DM_GPIO)
1465
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1466
	value = dm_gpio_get_value(&priv->wp_gpio);
1467
#endif
1468 1469 1470 1471 1472 1473
	/* if no WP return as 0 */
	if (value < 0)
		return 0;
	return value;
}
#else
1474 1475
static int omap_hsmmc_getcd(struct mmc *mmc)
{
1476
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1477 1478 1479
	int cd_gpio;

	/* if no CD return as 1 */
1480
	cd_gpio = priv->cd_gpio;
1481 1482 1483
	if (cd_gpio < 0)
		return 1;

1484 1485
	/* NOTE: assumes card detect signal is active-low */
	return !gpio_get_value(cd_gpio);
1486 1487 1488 1489
}

static int omap_hsmmc_getwp(struct mmc *mmc)
{
1490
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1491 1492 1493
	int wp_gpio;

	/* if no WP return as 0 */
1494
	wp_gpio = priv->wp_gpio;
1495 1496 1497
	if (wp_gpio < 0)
		return 0;

1498
	/* NOTE: assumes write protect signal is active-high */
1499 1500 1501
	return gpio_get_value(wp_gpio);
}
#endif
1502
#endif
1503

1504
#if CONFIG_IS_ENABLED(DM_MMC)
1505 1506 1507 1508 1509 1510 1511
static const struct dm_mmc_ops omap_hsmmc_ops = {
	.send_cmd	= omap_hsmmc_send_cmd,
	.set_ios	= omap_hsmmc_set_ios,
#ifdef OMAP_HSMMC_USE_GPIO
	.get_cd		= omap_hsmmc_getcd,
	.get_wp		= omap_hsmmc_getwp,
#endif
1512 1513 1514
#ifdef MMC_SUPPORTS_TUNING
	.execute_tuning = omap_hsmmc_execute_tuning,
#endif
1515
	.wait_dat0	= omap_hsmmc_wait_dat0,
1516 1517
};
#else
1518 1519 1520 1521 1522 1523 1524 1525 1526
static const struct mmc_ops omap_hsmmc_ops = {
	.send_cmd	= omap_hsmmc_send_cmd,
	.set_ios	= omap_hsmmc_set_ios,
	.init		= omap_hsmmc_init_setup,
#ifdef OMAP_HSMMC_USE_GPIO
	.getcd		= omap_hsmmc_getcd,
	.getwp		= omap_hsmmc_getwp,
#endif
};
1527
#endif
1528

1529
#if !CONFIG_IS_ENABLED(DM_MMC)
1530 1531
int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
		int wp_gpio)
1532
{
1533
	struct mmc *mmc;
1534
	struct omap_hsmmc_data *priv;
1535 1536 1537
	struct mmc_config *cfg;
	uint host_caps_val;

1538
	priv = calloc(1, sizeof(*priv));
1539
	if (priv == NULL)
1540
		return -1;
1541

R
Rob Herring 已提交
1542
	host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
1543 1544 1545

	switch (dev_index) {
	case 0:
1546
		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1547
		break;
1548
#ifdef OMAP_HSMMC2_BASE
1549
	case 1:
1550
		priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
1551
#if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
1552
	defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
1553 1554
	defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
		defined(CONFIG_HSMMC2_8BIT)
1555 1556 1557
		/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
		host_caps_val |= MMC_MODE_8BIT;
#endif
1558
		break;
1559 1560
#endif
#ifdef OMAP_HSMMC3_BASE
1561
	case 2:
1562
		priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
1563
#if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
1564 1565 1566
		/* Enable 8-bit interface for eMMC on DRA7XX */
		host_caps_val |= MMC_MODE_8BIT;
#endif
1567
		break;
1568
#endif
1569
	default:
1570
		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1571 1572
		return 1;
	}
1573 1574
#ifdef OMAP_HSMMC_USE_GPIO
	/* on error gpio values are set to -1, which is what we want */
1575 1576
	priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
	priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
1577
#endif
1578

1579
	cfg = &priv->cfg;
1580

1581 1582 1583 1584 1585 1586 1587
	cfg->name = "OMAP SD/MMC";
	cfg->ops = &omap_hsmmc_ops;

	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
	cfg->host_caps = host_caps_val & ~host_caps_mask;

	cfg->f_min = 400000;
1588 1589

	if (f_max != 0)
1590
		cfg->f_max = f_max;
1591
	else {
1592 1593 1594
		if (cfg->host_caps & MMC_MODE_HS) {
			if (cfg->host_caps & MMC_MODE_HS_52MHz)
				cfg->f_max = 52000000;
1595
			else
1596
				cfg->f_max = 26000000;
1597
		} else
1598
			cfg->f_max = 20000000;
1599
	}
1600

1601
	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
J
John Rigby 已提交
1602

1603 1604 1605 1606 1607
#if defined(CONFIG_OMAP34XX)
	/*
	 * Silicon revs 2.1 and older do not support multiblock transfers.
	 */
	if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
1608
		cfg->b_max = 1;
1609
#endif
1610

1611
	mmc = mmc_create(cfg, priv);
1612 1613
	if (mmc == NULL)
		return -1;
1614 1615 1616

	return 0;
}
1617
#else
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

#ifdef CONFIG_IODELAY_RECALIBRATION
static struct pad_conf_entry *
omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
{
	int index = 0;
	struct pad_conf_entry *padconf;

	padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
	if (!padconf) {
		debug("failed to allocate memory\n");
		return 0;
	}

	while (index < count) {
		padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
		padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
		index++;
	}

	return padconf;
}

static struct iodelay_cfg_entry *
omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
{
	int index = 0;
	struct iodelay_cfg_entry *iodelay;

	iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
	if (!iodelay) {
		debug("failed to allocate memory\n");
		return 0;
	}

	while (index < count) {
		iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
		iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
		iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
		index++;
	}

	return iodelay;
}

static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32  phandle,
						   const char *name, int *len)
{
	const void *fdt = gd->fdt_blob;
	int offset;
	const fdt32_t *pinctrl;

	offset = fdt_node_offset_by_phandle(fdt, phandle);
	if (offset < 0) {
		debug("failed to get pinctrl node %s.\n",
		      fdt_strerror(offset));
		return 0;
	}

	pinctrl = fdt_getprop(fdt, offset, name, len);
	if (!pinctrl) {
		debug("failed to get property %s\n", name);
		return 0;
	}

	return pinctrl;
}

static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
						char *prop_name)
{
	const void *fdt = gd->fdt_blob;
	const __be32 *phandle;
	int node = dev_of_offset(mmc->dev);

	phandle = fdt_getprop(fdt, node, prop_name, NULL);
	if (!phandle) {
		debug("failed to get property %s\n", prop_name);
		return 0;
	}

	return fdt32_to_cpu(*phandle);
}

static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
					       char *prop_name)
{
	const void *fdt = gd->fdt_blob;
	const __be32 *phandle;
	int len;
	int count;
	int node = dev_of_offset(mmc->dev);

	phandle = fdt_getprop(fdt, node, prop_name, &len);
	if (!phandle) {
		debug("failed to get property %s\n", prop_name);
		return 0;
	}

	/* No manual mode iodelay values if count < 2 */
	count = len / sizeof(*phandle);
	if (count < 2)
		return 0;

	return fdt32_to_cpu(*(phandle + 1));
}

static struct pad_conf_entry *
omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
{
	int len;
	int count;
	struct pad_conf_entry *padconf;
	u32 phandle;
	const fdt32_t *pinctrl;

	phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
	if (!phandle)
		return ERR_PTR(-EINVAL);

	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
					       &len);
	if (!pinctrl)
		return ERR_PTR(-EINVAL);

	count = (len / sizeof(*pinctrl)) / 2;
	padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
	if (!padconf)
		return ERR_PTR(-EINVAL);

	*npads = count;

	return padconf;
}

static struct iodelay_cfg_entry *
omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
{
	int len;
	int count;
	struct iodelay_cfg_entry *iodelay;
	u32 phandle;
	const fdt32_t *pinctrl;

	phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
	/* Not all modes have manual mode iodelay values. So its not fatal */
	if (!phandle)
		return 0;

	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
					       &len);
	if (!pinctrl)
		return ERR_PTR(-EINVAL);

	count = (len / sizeof(*pinctrl)) / 3;
	iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
	if (!iodelay)
		return ERR_PTR(-EINVAL);

	*niodelay = count;

	return iodelay;
}

static struct omap_hsmmc_pinctrl_state *
omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
{
	int index;
	int npads = 0;
	int niodelays = 0;
	const void *fdt = gd->fdt_blob;
	int node = dev_of_offset(mmc->dev);
	char prop_name[11];
	struct omap_hsmmc_pinctrl_state *pinctrl_state;

	pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
			 malloc(sizeof(*pinctrl_state));
	if (!pinctrl_state) {
		debug("failed to allocate memory\n");
		return 0;
	}

	index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
	if (index < 0) {
		debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
		goto err_pinctrl_state;
	}

	sprintf(prop_name, "pinctrl-%d", index);

	pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
							 &npads);
	if (IS_ERR(pinctrl_state->padconf))
		goto err_pinctrl_state;
	pinctrl_state->npads = npads;

	pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
							&niodelays);
	if (IS_ERR(pinctrl_state->iodelay))
		goto err_padconf;
	pinctrl_state->niodelays = niodelays;

	return pinctrl_state;

err_padconf:
	kfree(pinctrl_state->padconf);

err_pinctrl_state:
	kfree(pinctrl_state);
	return 0;
}

1830
#define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional)		\
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	do {								\
		struct omap_hsmmc_pinctrl_state *s = NULL;		\
		char str[20];						\
		if (!(cfg->host_caps & capmask))			\
			break;						\
									\
		if (priv->hw_rev) {					\
			sprintf(str, "%s-%s", #mode, priv->hw_rev);	\
			s = omap_hsmmc_get_pinctrl_by_mode(mmc, str);	\
		}							\
									\
		if (!s)							\
			s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode);	\
									\
1845
		if (!s && !optional) {					\
1846 1847 1848 1849 1850 1851
			debug("%s: no pinctrl for %s\n",		\
			      mmc->dev->name, #mode);			\
			cfg->host_caps &= ~(capmask);			\
		} else {						\
			priv->mode##_pinctrl_state = s;			\
		}							\
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	} while (0)

static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
	struct omap_hsmmc_pinctrl_state *default_pinctrl;

	if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
		return 0;

	default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
	if (!default_pinctrl) {
		printf("no pinctrl state for default mode\n");
		return -EINVAL;
	}

	priv->default_pinctrl_state = default_pinctrl;

1871 1872 1873 1874 1875
	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
1876

1877 1878 1879
	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
	OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
1880 1881 1882 1883 1884

	return 0;
}
#endif

1885
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1886 1887 1888 1889 1890 1891 1892
#ifdef CONFIG_OMAP54XX
__weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
{
	return NULL;
}
#endif

1893 1894
static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
{
1895
	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1896 1897
	struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);

1898
	struct mmc_config *cfg = &plat->cfg;
1899 1900 1901
#ifdef CONFIG_OMAP54XX
	const struct mmc_platform_fixups *fixups;
#endif
1902
	const void *fdt = gd->fdt_blob;
1903
	int node = dev_of_offset(dev);
1904
	int ret;
1905

S
Simon Glass 已提交
1906 1907
	plat->base_addr = map_physmem(devfdt_get_addr(dev),
				      sizeof(struct hsmmc *),
1908
				      MAP_NOCACHE);
1909

1910 1911 1912
	ret = mmc_of_parse(dev, cfg);
	if (ret < 0)
		return ret;
1913

1914 1915
	if (!cfg->f_max)
		cfg->f_max = 52000000;
1916
	cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
1917 1918 1919
	cfg->f_min = 400000;
	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1920 1921 1922 1923
	if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
		plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
	if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
		plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
1924 1925
	if (of_data)
		plat->controller_flags |= of_data->controller_flags;
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935
#ifdef CONFIG_OMAP54XX
	fixups = platform_fixups_mmc(devfdt_get_addr(dev));
	if (fixups) {
		plat->hw_rev = fixups->hw_rev;
		cfg->host_caps &= ~fixups->unsupported_caps;
		cfg->f_max = fixups->max_freq;
	}
#endif

1936 1937
	return 0;
}
1938
#endif
1939

1940 1941 1942 1943 1944
#ifdef CONFIG_BLK

static int omap_hsmmc_bind(struct udevice *dev)
{
	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1945 1946
	plat->mmc = calloc(1, sizeof(struct mmc));
	return mmc_bind(dev, plat->mmc, &plat->cfg);
1947 1948
}
#endif
1949 1950
static int omap_hsmmc_probe(struct udevice *dev)
{
1951
	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1952 1953
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1954
	struct mmc_config *cfg = &plat->cfg;
1955
	struct mmc *mmc;
1956 1957 1958
#ifdef CONFIG_IODELAY_RECALIBRATION
	int ret;
#endif
1959 1960

	cfg->name = "OMAP SD/MMC";
1961
	priv->base_addr = plat->base_addr;
1962
	priv->controller_flags = plat->controller_flags;
1963
	priv->hw_rev = plat->hw_rev;
1964

1965
#ifdef CONFIG_BLK
1966
	mmc = plat->mmc;
1967
#else
1968 1969 1970
	mmc = mmc_create(cfg, priv);
	if (mmc == NULL)
		return -1;
1971
#endif
1972 1973 1974 1975
#if CONFIG_IS_ENABLED(DM_REGULATOR)
	device_get_supply_regulator(dev, "pbias-supply",
				    &priv->pbias_supply);
#endif
1976 1977
#if defined(OMAP_HSMMC_USE_GPIO)
#if CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_GPIO)
1978 1979
	gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
	gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
1980
#endif
1981 1982
#endif

1983
	mmc->dev = dev;
1984 1985
	upriv->mmc = mmc;

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
#ifdef CONFIG_IODELAY_RECALIBRATION
	ret = omap_hsmmc_get_pinctrl_state(mmc);
	/*
	 * disable high speed modes for the platforms that require IO delay
	 * and for which we don't have this information
	 */
	if ((ret < 0) &&
	    (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
		priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
		cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
				    UHS_CAPS);
	}
#endif

2000
	return omap_hsmmc_init_setup(mmc);
2001 2002
}

2003
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2004 2005 2006 2007 2008

static const struct omap_mmc_of_data dra7_mmc_of_data = {
	.controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
};

2009
static const struct udevice_id omap_hsmmc_ids[] = {
2010 2011 2012
	{ .compatible = "ti,omap3-hsmmc" },
	{ .compatible = "ti,omap4-hsmmc" },
	{ .compatible = "ti,am33xx-hsmmc" },
2013
	{ .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
2014 2015
	{ }
};
2016
#endif
2017 2018 2019 2020

U_BOOT_DRIVER(omap_hsmmc) = {
	.name	= "omap_hsmmc",
	.id	= UCLASS_MMC,
2021
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2022 2023
	.of_match = omap_hsmmc_ids,
	.ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
2024 2025
	.platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
#endif
2026 2027 2028
#ifdef CONFIG_BLK
	.bind = omap_hsmmc_bind,
#endif
2029
	.ops = &omap_hsmmc_ops,
2030 2031
	.probe	= omap_hsmmc_probe,
	.priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
2032
#if !CONFIG_IS_ENABLED(OF_CONTROL)
2033
	.flags	= DM_FLAG_PRE_RELOC,
2034
#endif
2035 2036
};
#endif