core.c 207.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
195 196 197 198 199
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
200
	char *cmp;
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207 208 209 210
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
211
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
212

H
Hillf Danton 已提交
213
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
214 215 216 217
		neg = 1;
		cmp += 3;
	}

218
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220
			if (neg) {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features &= ~(1UL << i);
222 223
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
224
				sysctl_sched_features |= (1UL << i);
225 226
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
227 228 229 230
			break;
		}
	}

231
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
232 233
		return -EINVAL;

234
	*ppos += cnt;
P
Peter Zijlstra 已提交
235 236 237 238

	return cnt;
}

L
Li Zefan 已提交
239 240 241 242 243
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

244
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
245 246 247 248 249
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
250 251 252 253 254 255 256 257 258 259
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
260
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
261

262 263 264 265 266 267
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

268 269 270 271 272 273 274 275
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
276
/*
P
Peter Zijlstra 已提交
277
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
278 279
 * default: 1s
 */
P
Peter Zijlstra 已提交
280
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
281

282
__read_mostly int scheduler_running;
283

P
Peter Zijlstra 已提交
284 285 286 287 288
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
289 290


L
Linus Torvalds 已提交
291

292
/*
293
 * __task_rq_lock - lock the rq @p resides on.
294
 */
295
static inline struct rq *__task_rq_lock(struct task_struct *p)
296 297
	__acquires(rq->lock)
{
298 299
	struct rq *rq;

300 301
	lockdep_assert_held(&p->pi_lock);

302
	for (;;) {
303
		rq = task_rq(p);
304
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
305
		if (likely(rq == task_rq(p)))
306
			return rq;
307
		raw_spin_unlock(&rq->lock);
308 309 310
	}
}

L
Linus Torvalds 已提交
311
/*
312
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
313
 */
314
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
316 317
	__acquires(rq->lock)
{
318
	struct rq *rq;
L
Linus Torvalds 已提交
319

320
	for (;;) {
321
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322
		rq = task_rq(p);
323
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
324
		if (likely(rq == task_rq(p)))
325
			return rq;
326 327
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
328 329 330
	}
}

A
Alexey Dobriyan 已提交
331
static void __task_rq_unlock(struct rq *rq)
332 333
	__releases(rq->lock)
{
334
	raw_spin_unlock(&rq->lock);
335 336
}

337 338
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
339
	__releases(rq->lock)
340
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
341
{
342 343
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
344 345 346
}

/*
347
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
348
 */
A
Alexey Dobriyan 已提交
349
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353 354 355

	local_irq_disable();
	rq = this_rq();
356
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
357 358 359 360

	return rq;
}

P
Peter Zijlstra 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

389
	raw_spin_lock(&rq->lock);
390
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
391
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
393 394 395 396

	return HRTIMER_NORESTART;
}

397
#ifdef CONFIG_SMP
398 399 400 401
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
402
{
403
	struct rq *rq = arg;
404

405
	raw_spin_lock(&rq->lock);
406 407
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
408
	raw_spin_unlock(&rq->lock);
409 410
}

411 412 413 414 415
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
416
void hrtick_start(struct rq *rq, u64 delay)
417
{
418 419
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420

421
	hrtimer_set_expires(timer, time);
422 423 424 425

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
426
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 428
		rq->hrtick_csd_pending = 1;
	}
429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
443
		hrtick_clear(cpu_rq(cpu));
444 445 446 447 448 449
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

450
static __init void init_hrtick(void)
451 452 453
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
454 455 456 457 458 459
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
460
void hrtick_start(struct rq *rq, u64 delay)
461
{
462
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463
			HRTIMER_MODE_REL_PINNED, 0);
464
}
465

A
Andrew Morton 已提交
466
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
467 468
{
}
469
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
470

471
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
472
{
473 474
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
475

476 477 478 479
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
480

481 482
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
483
}
A
Andrew Morton 已提交
484
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
485 486 487 488 489 490 491 492
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

493 494 495
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
496
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
497

I
Ingo Molnar 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

511
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
512 513 514
{
	int cpu;

515
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
516

517
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
518 519
		return;

520
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
521 522 523 524 525 526 527 528 529 530 531

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

532
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
533 534 535 536
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

537
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
538 539
		return;
	resched_task(cpu_curr(cpu));
540
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
541
}
542 543

#ifdef CONFIG_NO_HZ
544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

558
	rcu_read_lock();
559
	for_each_domain(cpu, sd) {
560 561 562 563 564 565
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
566
	}
567 568
unlock:
	rcu_read_unlock();
569 570
	return cpu;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
597 598

	/*
599 600 601
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
602
	 */
603
	set_tsk_need_resched(rq->idle);
604

605 606 607 608
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
609 610
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613 614
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 616
}

617
#else /* CONFIG_NO_HZ */
618

619
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
620
{
621
	return false;
P
Peter Zijlstra 已提交
622 623
}

624
#endif /* CONFIG_NO_HZ */
625

626
void sched_avg_update(struct rq *rq)
627
{
628 629 630
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 632 633 634 635 636
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
637 638 639
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
640 641
}

642
#else /* !CONFIG_SMP */
643
void resched_task(struct task_struct *p)
644
{
645
	assert_raw_spin_locked(&task_rq(p)->lock);
646
	set_tsk_need_resched(p);
647
}
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695 696
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702 703
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
710
	load->inv_weight = prio_to_wmult[prio];
711 712
}

713
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714
{
715
	update_rq_clock(rq);
I
Ingo Molnar 已提交
716
	sched_info_queued(p);
717
	p->sched_class->enqueue_task(rq, p, flags);
718 719
}

720
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721
{
722
	update_rq_clock(rq);
723
	sched_info_dequeued(p);
724
	p->sched_class->dequeue_task(rq, p, flags);
725 726
}

727
void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 729 730 731
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

732
	enqueue_task(rq, p, flags);
733 734
}

735
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

740
	dequeue_task(rq, p, flags);
741 742
}

743 744
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

745 746 747 748 749 750 751
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
752 753 754
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
755
 */
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
810 811 812
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
813
#endif /* CONFIG_64BIT */
814

815 816 817 818
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
819 820 821
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
822
	s64 delta;
823 824 825 826 827 828 829 830
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
831 832 833
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

834
	irq_time_write_begin();
835 836 837 838 839 840 841
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
842
		__this_cpu_add(cpu_hardirq_time, delta);
843
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844
		__this_cpu_add(cpu_softirq_time, delta);
845

846
	irq_time_write_end();
847 848
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
849
EXPORT_SYMBOL_GPL(account_system_vtime);
850

G
Glauber Costa 已提交
851 852 853 854
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
855
{
G
Glauber Costa 已提交
856 857
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
858

G
Glauber Costa 已提交
859 860 861 862
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

863
static void update_rq_clock_task(struct rq *rq, s64 delta)
864
{
865 866 867 868 869 870 871 872
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
873
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
895 896
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897
	if (static_key_false((&paravirt_steal_rq_enabled))) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

915 916
	rq->clock_task += delta;

917 918 919 920
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
921 922
}

923
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 925
static int irqtime_account_hi_update(void)
{
926
	u64 *cpustat = kcpustat_this_cpu->cpustat;
927 928 929 930 931 932
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
933
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 935 936 937 938 939 940
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
941
	u64 *cpustat = kcpustat_this_cpu->cpustat;
942 943 944 945 946 947
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
948
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 950 951 952 953
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

954
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
955

956 957
#define sched_clock_irqtime	(0)

958
#endif
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

990
/*
I
Ingo Molnar 已提交
991
 * __normal_prio - return the priority that is based on the static prio
992 993 994
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
995
	return p->static_prio;
996 997
}

998 999 1000 1001 1002 1003 1004
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1005
static inline int normal_prio(struct task_struct *p)
1006 1007 1008
{
	int prio;

1009
	if (task_has_rt_policy(p))
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1023
static int effective_prio(struct task_struct *p)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1036 1037 1038 1039
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1040
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1041 1042 1043 1044
{
	return cpu_curr(task_cpu(p)) == p;
}

1045 1046
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1047
				       int oldprio)
1048 1049 1050
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1051 1052 1053 1054
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1055 1056
}

1057
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1078
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 1080 1081
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1082
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1083
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1084
{
1085 1086 1087 1088 1089
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1090 1091
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092 1093

#ifdef CONFIG_LOCKDEP
1094 1095 1096 1097 1098
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1099
	 * see task_group().
1100 1101 1102 1103
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1104 1105 1106
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1107 1108
#endif

1109
	trace_sched_migrate_task(p, new_cpu);
1110

1111 1112
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1113
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114
	}
I
Ingo Molnar 已提交
1115 1116

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1117 1118
}

1119
struct migration_arg {
1120
	struct task_struct *task;
L
Linus Torvalds 已提交
1121
	int dest_cpu;
1122
};
L
Linus Torvalds 已提交
1123

1124 1125
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1126 1127 1128
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1129 1130 1131 1132 1133 1134 1135
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1136 1137 1138 1139 1140 1141
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1142
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1143 1144
{
	unsigned long flags;
I
Ingo Molnar 已提交
1145
	int running, on_rq;
R
Roland McGrath 已提交
1146
	unsigned long ncsw;
1147
	struct rq *rq;
L
Linus Torvalds 已提交
1148

1149 1150 1151 1152 1153 1154 1155 1156
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1169 1170 1171
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1172
			cpu_relax();
R
Roland McGrath 已提交
1173
		}
1174

1175 1176 1177 1178 1179 1180
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1181
		trace_sched_wait_task(p);
1182
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1183
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1184
		ncsw = 0;
1185
		if (!match_state || p->state == match_state)
1186
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187
		task_rq_unlock(rq, p, &flags);
1188

R
Roland McGrath 已提交
1189 1190 1191 1192 1193 1194
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1205

1206 1207 1208 1209 1210
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1211
		 * So if it was still runnable (but just not actively
1212 1213 1214 1215
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1216 1217 1218 1219
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 1221
			continue;
		}
1222

1223 1224 1225 1226 1227 1228 1229
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1230 1231

	return ncsw;
L
Linus Torvalds 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1241
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1242 1243 1244 1245 1246
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1247
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1257
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1258
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1259

1260
#ifdef CONFIG_SMP
1261
/*
1262
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263
 */
1264 1265 1266
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 1268
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1269 1270

	/* Look for allowed, online CPU in same node. */
1271
	for_each_cpu(dest_cpu, nodemask) {
1272 1273 1274 1275
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1276
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277
			return dest_cpu;
1278
	}
1279

1280 1281
	for (;;) {
		/* Any allowed, online CPU? */
1282
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 1284 1285 1286 1287 1288
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1319 1320 1321 1322 1323
	}

	return dest_cpu;
}

1324
/*
1325
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326
 */
1327
static inline
1328
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329
{
1330
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1342
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1343
		     !cpu_online(cpu)))
1344
		cpu = select_fallback_rq(task_cpu(p), p);
1345 1346

	return cpu;
1347
}
1348 1349 1350 1351 1352 1353

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1354 1355
#endif

P
Peter Zijlstra 已提交
1356
static void
1357
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1358
{
P
Peter Zijlstra 已提交
1359
#ifdef CONFIG_SCHEDSTATS
1360 1361
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372
		rcu_read_lock();
P
Peter Zijlstra 已提交
1373 1374 1375 1376 1377 1378
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1379
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1380
	}
1381 1382 1383 1384

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1385 1386 1387
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1388
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1389 1390

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1391
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1392 1393 1394 1395 1396 1397

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1398
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1399
	p->on_rq = 1;
1400 1401 1402 1403

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1404 1405
}

1406 1407 1408
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1409
static void
1410
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1411
{
1412
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1413 1414 1415 1416 1417 1418 1419
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1420
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1466
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1467
static void sched_ttwu_pending(void)
1468 1469
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1470 1471
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1472 1473 1474

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1475 1476 1477
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1478 1479 1480 1481 1482 1483 1484 1485
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1486
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1503
	sched_ttwu_pending();
1504 1505 1506 1507

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1508 1509
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1510
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511
	}
1512
	irq_exit();
1513 1514 1515 1516
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1517
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 1519
		smp_send_reschedule(cpu);
}
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539

1540
bool cpus_share_cache(int this_cpu, int that_cpu)
1541 1542 1543
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1544
#endif /* CONFIG_SMP */
1545

1546 1547 1548 1549
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1550
#if defined(CONFIG_SMP)
1551
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 1554 1555 1556 1557
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1558 1559 1560
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1561 1562 1563
}

/**
L
Linus Torvalds 已提交
1564
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1565
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1566
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1567
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573 1574
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1575 1576
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1577
 */
1578 1579
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1580 1581
{
	unsigned long flags;
1582
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1583

1584
	smp_wmb();
1585
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1586
	if (!(p->state & state))
L
Linus Torvalds 已提交
1587 1588
		goto out;

1589
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1590 1591
	cpu = task_cpu(p);

1592 1593
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1594 1595

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1596
	/*
1597 1598
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1599
	 */
1600 1601 1602
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1603 1604 1605 1606 1607
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1608
		 */
1609
		if (ttwu_activate_remote(p, wake_flags))
1610
			goto stat;
1611
#else
1612
		cpu_relax();
1613
#endif
1614
	}
1615
	/*
1616
	 * Pairs with the smp_wmb() in finish_lock_switch().
1617
	 */
1618
	smp_rmb();
L
Linus Torvalds 已提交
1619

1620
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1621
	p->state = TASK_WAKING;
1622

1623
	if (p->sched_class->task_waking)
1624
		p->sched_class->task_waking(p);
1625

1626
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 1628
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1629
		set_task_cpu(p, cpu);
1630
	}
L
Linus Torvalds 已提交
1631 1632
#endif /* CONFIG_SMP */

1633 1634
	ttwu_queue(p, cpu);
stat:
1635
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1636
out:
1637
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1638 1639 1640 1641

	return success;
}

T
Tejun Heo 已提交
1642 1643 1644 1645
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1646
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1647
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648
 * the current task.
T
Tejun Heo 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1658 1659 1660 1661 1662 1663
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1664
	if (!(p->state & TASK_NORMAL))
1665
		goto out;
T
Tejun Heo 已提交
1666

P
Peter Zijlstra 已提交
1667
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1668 1669
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1670
	ttwu_do_wakeup(rq, p, 0);
1671
	ttwu_stat(p, smp_processor_id(), 0);
1672 1673
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1674 1675
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1687
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1688
{
1689
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1690 1691 1692
}
EXPORT_SYMBOL(wake_up_process);

1693
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1694 1695 1696 1697 1698 1699 1700
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1701 1702 1703 1704 1705
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1706 1707 1708
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1709 1710
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1711
	p->se.prev_sum_exec_runtime	= 0;
1712
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1713
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1714
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1715 1716

#ifdef CONFIG_SCHEDSTATS
1717
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1718
#endif
N
Nick Piggin 已提交
1719

P
Peter Zijlstra 已提交
1720
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1721

1722 1723 1724
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1725 1726 1727 1728 1729
}

/*
 * fork()/clone()-time setup:
 */
1730
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1731
{
1732
	unsigned long flags;
I
Ingo Molnar 已提交
1733 1734 1735
	int cpu = get_cpu();

	__sched_fork(p);
1736
	/*
1737
	 * We mark the process as running here. This guarantees that
1738 1739 1740
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1741
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1742

1743 1744 1745 1746 1747
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1748 1749 1750 1751
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1752
		if (task_has_rt_policy(p)) {
1753
			p->policy = SCHED_NORMAL;
1754
			p->static_prio = NICE_TO_PRIO(0);
1755 1756 1757 1758 1759 1760
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1761

1762 1763 1764 1765 1766 1767
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1768

H
Hiroshi Shimamoto 已提交
1769 1770
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1771

P
Peter Zijlstra 已提交
1772 1773 1774
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1775 1776 1777 1778 1779 1780 1781
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1782
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783
	set_task_cpu(p, cpu);
1784
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785

1786
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1787
	if (likely(sched_info_on()))
1788
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1789
#endif
P
Peter Zijlstra 已提交
1790 1791
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1792
#endif
1793
#ifdef CONFIG_PREEMPT_COUNT
1794
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1795
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1796
#endif
1797
#ifdef CONFIG_SMP
1798
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799
#endif
1800

N
Nick Piggin 已提交
1801
	put_cpu();
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1811
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1812 1813
{
	unsigned long flags;
I
Ingo Molnar 已提交
1814
	struct rq *rq;
1815

1816
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 1818 1819 1820 1821 1822
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1823
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 1825
#endif

1826
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1827
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1828
	p->on_rq = 1;
1829
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1830
	check_preempt_curr(rq, p, WF_FORK);
1831
#ifdef CONFIG_SMP
1832 1833
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1834
#endif
1835
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1836 1837
}

1838 1839 1840
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1841
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1842
 * @notifier: notifier struct to register
1843 1844 1845 1846 1847 1848 1849 1850 1851
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1852
 * @notifier: notifier struct to unregister
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1882
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1894
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1895

1896 1897 1898
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1899
 * @prev: the current task that is being switched out
1900 1901 1902 1903 1904 1905 1906 1907 1908
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1909 1910 1911
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1912
{
1913
	trace_sched_switch(prev, next);
1914 1915
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1916
	fire_sched_out_preempt_notifiers(prev, next);
1917 1918 1919 1920
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1921 1922
/**
 * finish_task_switch - clean up after a task-switch
1923
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1924 1925
 * @prev: the thread we just switched away from.
 *
1926 1927 1928 1929
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1930 1931
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1932
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1933 1934 1935
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1936
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1937 1938 1939
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1940
	long prev_state;
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1946
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1947 1948
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1949
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1955
	prev_state = prev->state;
1956
	finish_arch_switch(prev);
1957 1958 1959
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960
	perf_event_task_sched_in(prev, current);
1961 1962 1963
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964
	finish_lock_switch(rq, prev);
1965
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1966

1967
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1968 1969
	if (mm)
		mmdrop(mm);
1970
	if (unlikely(prev_state == TASK_DEAD)) {
1971 1972 1973
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1974
		 */
1975
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1976
		put_task_struct(prev);
1977
	}
L
Linus Torvalds 已提交
1978 1979
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1995
		raw_spin_lock_irqsave(&rq->lock, flags);
1996 1997
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1998
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1999 2000 2001 2002 2003 2004

		rq->post_schedule = 0;
	}
}

#else
2005

2006 2007 2008 2009 2010 2011
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2012 2013
}

2014 2015
#endif

L
Linus Torvalds 已提交
2016 2017 2018 2019
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2020
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2021 2022
	__releases(rq->lock)
{
2023 2024
	struct rq *rq = this_rq();

2025
	finish_task_switch(rq, prev);
2026

2027 2028 2029 2030 2031
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2032

2033 2034 2035 2036
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2037
	if (current->set_child_tid)
2038
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2045
static inline void
2046
context_switch(struct rq *rq, struct task_struct *prev,
2047
	       struct task_struct *next)
L
Linus Torvalds 已提交
2048
{
I
Ingo Molnar 已提交
2049
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2050

2051
	prepare_task_switch(rq, prev, next);
2052

I
Ingo Molnar 已提交
2053 2054
	mm = next->mm;
	oldmm = prev->active_mm;
2055 2056 2057 2058 2059
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2060
	arch_start_context_switch(prev);
2061

2062
	if (!mm) {
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2069
	if (!prev->mm) {
L
Linus Torvalds 已提交
2070 2071 2072
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2073 2074 2075 2076 2077 2078 2079
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081
#endif
L
Linus Torvalds 已提交
2082 2083 2084 2085

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2086 2087 2088 2089 2090 2091 2092
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2110
}
L
Linus Torvalds 已提交
2111 2112

unsigned long nr_uninterruptible(void)
2113
{
L
Linus Torvalds 已提交
2114
	unsigned long i, sum = 0;
2115

2116
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2117
		sum += cpu_rq(i)->nr_uninterruptible;
2118 2119

	/*
L
Linus Torvalds 已提交
2120 2121
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2122
	 */
L
Linus Torvalds 已提交
2123 2124
	if (unlikely((long)sum < 0))
		sum = 0;
2125

L
Linus Torvalds 已提交
2126
	return sum;
2127 2128
}

L
Linus Torvalds 已提交
2129
unsigned long long nr_context_switches(void)
2130
{
2131 2132
	int i;
	unsigned long long sum = 0;
2133

2134
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2135
		sum += cpu_rq(i)->nr_switches;
2136

L
Linus Torvalds 已提交
2137 2138
	return sum;
}
2139

L
Linus Torvalds 已提交
2140 2141 2142
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2143

2144
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2145
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2146

L
Linus Torvalds 已提交
2147 2148
	return sum;
}
2149

2150
unsigned long nr_iowait_cpu(int cpu)
2151
{
2152
	struct rq *this = cpu_rq(cpu);
2153 2154
	return atomic_read(&this->nr_iowait);
}
2155

2156 2157 2158 2159 2160
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2161

2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2210 2211 2212 2213
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2230

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2246 2247 2248
/*
 * a1 = a0 * e + a * (1 - e)
 */
2249 2250 2251 2252 2253 2254 2255 2256 2257
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2258 2259
#ifdef CONFIG_NO_HZ
/*
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2298 2299 2300
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2301 2302
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2303

2304
static inline int calc_load_write_idx(void)
2305
{
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2332 2333
	long delta;

2334 2335 2336 2337
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2338
	delta = calc_load_fold_active(this_rq);
2339 2340 2341 2342
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2343 2344
}

2345
void calc_load_exit_idle(void)
2346
{
2347 2348 2349 2350 2351 2352 2353
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2354 2355

	/*
2356 2357 2358
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2359
	 */
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2372 2373 2374

	return delta;
}
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2453
static void calc_global_nohz(void)
2454 2455 2456
{
	long delta, active, n;

2457 2458 2459 2460 2461 2462
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2463

2464 2465
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2466

2467 2468 2469
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2470

2471 2472
		calc_load_update += n * LOAD_FREQ;
	}
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2483
}
2484
#else /* !CONFIG_NO_HZ */
2485

2486 2487
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2488

2489
#endif /* CONFIG_NO_HZ */
2490 2491

/*
2492 2493
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2494
 */
2495
void calc_global_load(unsigned long ticks)
2496
{
2497
	long active, delta;
L
Linus Torvalds 已提交
2498

2499
	if (time_before(jiffies, calc_load_update + 10))
2500
		return;
L
Linus Torvalds 已提交
2501

2502 2503 2504 2505 2506 2507 2508
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2509 2510
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2511

2512 2513 2514
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2515

2516
	calc_load_update += LOAD_FREQ;
2517 2518

	/*
2519
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2520 2521
	 */
	calc_global_nohz();
2522
}
L
Linus Torvalds 已提交
2523

2524
/*
2525 2526
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2527 2528 2529
 */
static void calc_load_account_active(struct rq *this_rq)
{
2530
	long delta;
2531

2532 2533
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2534

2535 2536
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2537
		atomic_long_add(delta, &calc_load_tasks);
2538 2539

	this_rq->calc_load_update += LOAD_FREQ;
2540 2541
}

2542 2543 2544 2545
/*
 * End of global load-average stuff
 */

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2613
/*
I
Ingo Molnar 已提交
2614
 * Update rq->cpu_load[] statistics. This function is usually called every
2615 2616
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2617
 */
2618 2619
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2620
{
I
Ingo Molnar 已提交
2621
	int i, scale;
2622

I
Ingo Molnar 已提交
2623
	this_rq->nr_load_updates++;
2624

I
Ingo Molnar 已提交
2625
	/* Update our load: */
2626 2627
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2628
		unsigned long old_load, new_load;
2629

I
Ingo Molnar 已提交
2630
		/* scale is effectively 1 << i now, and >> i divides by scale */
2631

I
Ingo Molnar 已提交
2632
		old_load = this_rq->cpu_load[i];
2633
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2634
		new_load = this_load;
I
Ingo Molnar 已提交
2635 2636 2637 2638 2639 2640
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2641 2642 2643
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2644
	}
2645 2646

	sched_avg_update(this_rq);
2647 2648
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2663 2664 2665 2666 2667 2668
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2669
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2670 2671 2672 2673
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2674
	 * bail if there's load or we're actually up-to-date.
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2711 2712 2713
/*
 * Called from scheduler_tick()
 */
2714 2715
static void update_cpu_load_active(struct rq *this_rq)
{
2716
	/*
2717
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2718 2719 2720
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2721

2722
	calc_load_account_active(this_rq);
2723 2724
}

I
Ingo Molnar 已提交
2725
#ifdef CONFIG_SMP
2726

2727
/*
P
Peter Zijlstra 已提交
2728 2729
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2730
 */
P
Peter Zijlstra 已提交
2731
void sched_exec(void)
2732
{
P
Peter Zijlstra 已提交
2733
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2734
	unsigned long flags;
2735
	int dest_cpu;
2736

2737
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2738
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2739 2740
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2741

2742
	if (likely(cpu_active(dest_cpu))) {
2743
		struct migration_arg arg = { p, dest_cpu };
2744

2745 2746
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2747 2748
		return;
	}
2749
unlock:
2750
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2751
}
I
Ingo Molnar 已提交
2752

L
Linus Torvalds 已提交
2753 2754 2755
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2756
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2757 2758

EXPORT_PER_CPU_SYMBOL(kstat);
2759
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2760 2761

/*
2762
 * Return any ns on the sched_clock that have not yet been accounted in
2763
 * @p in case that task is currently running.
2764 2765
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2766
 */
2767 2768 2769 2770 2771 2772
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2773
		ns = rq->clock_task - p->se.exec_start;
2774 2775 2776 2777 2778 2779 2780
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2781
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2782 2783
{
	unsigned long flags;
2784
	struct rq *rq;
2785
	u64 ns = 0;
2786

2787
	rq = task_rq_lock(p, &flags);
2788
	ns = do_task_delta_exec(p, rq);
2789
	task_rq_unlock(rq, p, &flags);
2790

2791 2792
	return ns;
}
2793

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2807
	task_rq_unlock(rq, p, &flags);
2808 2809 2810

	return ns;
}
2811

2812 2813 2814 2815 2816
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2817 2818
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2848 2849 2850 2851
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2852
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2853
 */
2854 2855
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2856
{
2857
	int index;
L
Linus Torvalds 已提交
2858

2859
	/* Add user time to process. */
2860 2861
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2862
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2863

2864
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2865

L
Linus Torvalds 已提交
2866
	/* Add user time to cpustat. */
2867
	task_group_account_field(p, index, (__force u64) cputime);
2868

2869 2870
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2871 2872
}

2873 2874 2875 2876
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2877
 * @cputime_scaled: cputime scaled by cpu frequency
2878
 */
2879 2880
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2881
{
2882
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2883

2884
	/* Add guest time to process. */
2885 2886
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2887
	account_group_user_time(p, cputime);
2888
	p->gtime += cputime;
2889

2890
	/* Add guest time to cpustat. */
2891
	if (TASK_NICE(p) > 0) {
2892 2893
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2894
	} else {
2895 2896
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2897
	}
2898 2899
}

2900 2901 2902 2903 2904 2905 2906 2907 2908
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2909
			cputime_t cputime_scaled, int index)
2910 2911
{
	/* Add system time to process. */
2912 2913
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2914 2915 2916
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2917
	task_group_account_field(p, index, (__force u64) cputime);
2918 2919 2920 2921 2922

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2923 2924 2925 2926 2927
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2928
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2929 2930
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2931
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2932
{
2933
	int index;
L
Linus Torvalds 已提交
2934

2935
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2936
		account_guest_time(p, cputime, cputime_scaled);
2937 2938
		return;
	}
2939

L
Linus Torvalds 已提交
2940
	if (hardirq_count() - hardirq_offset)
2941
		index = CPUTIME_IRQ;
2942
	else if (in_serving_softirq())
2943
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2944
	else
2945
		index = CPUTIME_SYSTEM;
2946

2947
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2948 2949
}

2950
/*
L
Linus Torvalds 已提交
2951
 * Account for involuntary wait time.
2952
 * @cputime: the cpu time spent in involuntary wait
2953
 */
2954
void account_steal_time(cputime_t cputime)
2955
{
2956
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2957

2958
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2959 2960
}

L
Linus Torvalds 已提交
2961
/*
2962 2963
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2964
 */
2965
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2966
{
2967
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2968
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2969

2970
	if (atomic_read(&rq->nr_iowait) > 0)
2971
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2972
	else
2973
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2974 2975
}

G
Glauber Costa 已提交
2976 2977 2978
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
2979
	if (static_key_false(&paravirt_steal_enabled)) {
G
Glauber Costa 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2995 2996
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3023
	u64 *cpustat = kcpustat_this_cpu->cpustat;
3024

G
Glauber Costa 已提交
3025 3026 3027
	if (steal_account_process_tick())
		return;

3028
	if (irqtime_account_hi_update()) {
3029
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3030
	} else if (irqtime_account_si_update()) {
3031
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3032 3033 3034 3035 3036 3037 3038
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3039
					CPUTIME_SOFTIRQ);
3040 3041 3042 3043 3044 3045 3046 3047
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3048
					CPUTIME_SYSTEM);
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
3060
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3061 3062 3063
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
3064
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3065 3066 3067 3068 3069 3070 3071 3072

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3073
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3074 3075
	struct rq *rq = this_rq();

3076 3077 3078 3079 3080
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
3081 3082 3083
	if (steal_account_process_tick())
		return;

3084
	if (user_tick)
3085
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3086
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3087
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3088 3089
				    one_jiffy_scaled);
	else
3090
		account_idle_time(cputime_one_jiffy);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
3109 3110 3111 3112 3113 3114

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

3115
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3116 3117
}

3118 3119
#endif

3120 3121 3122 3123
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3124
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3125
{
3126 3127
	*ut = p->utime;
	*st = p->stime;
3128 3129
}

3130
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3131
{
3132 3133 3134 3135 3136 3137
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3138 3139
}
#else
3140 3141

#ifndef nsecs_to_cputime
3142
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3143 3144
#endif

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
{
	u64 temp = (__force u64) rtime;

	temp *= (__force u64) utime;

	if (sizeof(cputime_t) == 4)
		temp = div_u64(temp, (__force u32) total);
	else
		temp = div64_u64(temp, (__force u64) total);

	return (__force cputime_t) temp;
}

3159
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3160
{
3161
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3162 3163 3164 3165

	/*
	 * Use CFS's precise accounting:
	 */
3166
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3167

3168 3169 3170
	if (total)
		utime = scale_utime(utime, rtime, total);
	else
3171
		utime = rtime;
3172

3173 3174 3175
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3176
	p->prev_utime = max(p->prev_utime, utime);
3177
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3178

3179 3180
	*ut = p->prev_utime;
	*st = p->prev_stime;
3181 3182
}

3183 3184 3185 3186
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3187
{
3188 3189 3190
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3191

3192
	thread_group_cputime(p, &cputime);
3193

3194
	total = cputime.utime + cputime.stime;
3195
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3196

3197 3198 3199
	if (total)
		utime = scale_utime(cputime.utime, rtime, total);
	else
3200 3201 3202
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
3203
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3204 3205 3206

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3207 3208 3209
}
#endif

3210 3211 3212 3213 3214 3215 3216 3217
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3218
	struct task_struct *curr = rq->curr;
3219 3220

	sched_clock_tick();
I
Ingo Molnar 已提交
3221

3222
	raw_spin_lock(&rq->lock);
3223
	update_rq_clock(rq);
3224
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3225
	curr->sched_class->task_tick(rq, curr, 0);
3226
	raw_spin_unlock(&rq->lock);
3227

3228
	perf_event_task_tick();
3229

3230
#ifdef CONFIG_SMP
3231
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3232
	trigger_load_balance(rq, cpu);
3233
#endif
L
Linus Torvalds 已提交
3234 3235
}

3236
notrace unsigned long get_parent_ip(unsigned long addr)
3237 3238 3239 3240 3241 3242 3243 3244
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3245

3246 3247 3248
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3249
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3250
{
3251
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3252 3253 3254
	/*
	 * Underflow?
	 */
3255 3256
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3257
#endif
L
Linus Torvalds 已提交
3258
	preempt_count() += val;
3259
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3260 3261 3262
	/*
	 * Spinlock count overflowing soon?
	 */
3263 3264
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3265 3266 3267
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3268 3269 3270
}
EXPORT_SYMBOL(add_preempt_count);

3271
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3272
{
3273
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3274 3275 3276
	/*
	 * Underflow?
	 */
3277
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3278
		return;
L
Linus Torvalds 已提交
3279 3280 3281
	/*
	 * Is the spinlock portion underflowing?
	 */
3282 3283 3284
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3285
#endif
3286

3287 3288
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3289 3290 3291 3292 3293 3294 3295
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3296
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3297
 */
I
Ingo Molnar 已提交
3298
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3299
{
3300 3301 3302
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3303 3304
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3305

I
Ingo Molnar 已提交
3306
	debug_show_held_locks(prev);
3307
	print_modules();
I
Ingo Molnar 已提交
3308 3309
	if (irqs_disabled())
		print_irqtrace_events(prev);
3310
	dump_stack();
3311
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
3312
}
L
Linus Torvalds 已提交
3313

I
Ingo Molnar 已提交
3314 3315 3316 3317 3318
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3319
	/*
I
Ingo Molnar 已提交
3320
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3321 3322 3323
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3324
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3325
		__schedule_bug(prev);
3326
	rcu_sleep_check();
I
Ingo Molnar 已提交
3327

L
Linus Torvalds 已提交
3328 3329
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3330
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3331 3332
}

P
Peter Zijlstra 已提交
3333
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3334
{
3335
	if (prev->on_rq || rq->skip_clock_update < 0)
3336
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3337
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3338 3339
}

I
Ingo Molnar 已提交
3340 3341 3342 3343
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3344
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3345
{
3346
	const struct sched_class *class;
I
Ingo Molnar 已提交
3347
	struct task_struct *p;
L
Linus Torvalds 已提交
3348 3349

	/*
I
Ingo Molnar 已提交
3350 3351
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3352
	 */
3353
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3354
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3355 3356
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3357 3358
	}

3359
	for_each_class(class) {
3360
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3361 3362 3363
		if (p)
			return p;
	}
3364 3365

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3366
}
L
Linus Torvalds 已提交
3367

I
Ingo Molnar 已提交
3368
/*
3369
 * __schedule() is the main scheduler function.
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
3404
 */
3405
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3406 3407
{
	struct task_struct *prev, *next;
3408
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3409
	struct rq *rq;
3410
	int cpu;
I
Ingo Molnar 已提交
3411

3412 3413
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3414 3415
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3416
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3417 3418 3419
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3420

3421
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3422
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3423

3424
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3425

3426
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3427
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3428
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3429
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3430
		} else {
3431 3432 3433
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3434
			/*
3435 3436 3437
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3447
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3448 3449
	}

3450
	pre_schedule(rq, prev);
3451

I
Ingo Molnar 已提交
3452
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3453 3454
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3455
	put_prev_task(rq, prev);
3456
	next = pick_next_task(rq);
3457 3458
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3459 3460 3461 3462 3463 3464

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3465
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3466
		/*
3467 3468 3469 3470
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3471 3472 3473
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3474
	} else
3475
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3476

3477
	post_schedule(rq);
L
Linus Torvalds 已提交
3478

3479
	sched_preempt_enable_no_resched();
3480
	if (need_resched())
L
Linus Torvalds 已提交
3481 3482
		goto need_resched;
}
3483

3484 3485
static inline void sched_submit_work(struct task_struct *tsk)
{
3486
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3487 3488 3489 3490 3491 3492 3493 3494 3495
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3496
asmlinkage void __sched schedule(void)
3497
{
3498 3499 3500
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3501 3502
	__schedule();
}
L
Linus Torvalds 已提交
3503 3504
EXPORT_SYMBOL(schedule);

3505 3506 3507 3508 3509 3510 3511
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3512
	sched_preempt_enable_no_resched();
3513 3514 3515 3516
	schedule();
	preempt_disable();
}

3517
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3518

3519 3520 3521
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3522
		return false;
3523 3524

	/*
3525 3526 3527 3528
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3529
	 */
3530
	barrier();
3531

3532
	return owner->on_cpu;
3533
}
3534

3535 3536 3537 3538 3539 3540 3541 3542
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3543

3544
	rcu_read_lock();
3545 3546
	while (owner_running(lock, owner)) {
		if (need_resched())
3547
			break;
3548

3549
		arch_mutex_cpu_relax();
3550
	}
3551
	rcu_read_unlock();
3552

3553
	/*
3554 3555 3556
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3557
	 */
3558
	return lock->owner == NULL;
3559 3560 3561
}
#endif

L
Linus Torvalds 已提交
3562 3563
#ifdef CONFIG_PREEMPT
/*
3564
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3565
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3566 3567
 * occur there and call schedule directly.
 */
3568
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3569 3570
{
	struct thread_info *ti = current_thread_info();
3571

L
Linus Torvalds 已提交
3572 3573
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3574
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3575
	 */
N
Nick Piggin 已提交
3576
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3577 3578
		return;

3579
	do {
3580
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3581
		__schedule();
3582
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3583

3584 3585 3586 3587 3588
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3589
	} while (need_resched());
L
Linus Torvalds 已提交
3590 3591 3592 3593
}
EXPORT_SYMBOL(preempt_schedule);

/*
3594
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3595 3596 3597 3598 3599 3600 3601
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3602

3603
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3604 3605
	BUG_ON(ti->preempt_count || !irqs_disabled());

3606 3607 3608
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3609
		__schedule();
3610 3611
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3612

3613 3614 3615 3616 3617
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3618
	} while (need_resched());
L
Linus Torvalds 已提交
3619 3620 3621 3622
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3623
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3624
			  void *key)
L
Linus Torvalds 已提交
3625
{
P
Peter Zijlstra 已提交
3626
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3627 3628 3629 3630
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3631 3632
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3633 3634 3635
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3636
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3637 3638
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3639
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3640
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3641
{
3642
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3643

3644
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3645 3646
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3647
		if (curr->func(curr, mode, wake_flags, key) &&
3648
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3658
 * @key: is directly passed to the wakeup function
3659 3660 3661
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3662
 */
3663
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3664
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3677
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3678
{
3679
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3680
}
3681
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3682

3683 3684 3685 3686
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3687
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3688

L
Linus Torvalds 已提交
3689
/**
3690
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3691 3692 3693
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3694
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3695 3696 3697 3698 3699 3700 3701
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3702 3703 3704
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3705
 */
3706 3707
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3708 3709
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3710
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3711 3712 3713 3714 3715

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3716
		wake_flags = 0;
L
Linus Torvalds 已提交
3717 3718

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3719
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3720 3721
	spin_unlock_irqrestore(&q->lock, flags);
}
3722 3723 3724 3725 3726 3727 3728 3729 3730
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3731 3732
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3733 3734 3735 3736 3737 3738 3739 3740
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3741 3742 3743
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3744
 */
3745
void complete(struct completion *x)
L
Linus Torvalds 已提交
3746 3747 3748 3749 3750
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3751
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3752 3753 3754 3755
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3756 3757 3758 3759 3760
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3761 3762 3763
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3764
 */
3765
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3771
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3772 3773 3774 3775
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3776 3777
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3778 3779 3780 3781
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3782
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3783
		do {
3784
			if (signal_pending_state(state, current)) {
3785 3786
				timeout = -ERESTARTSYS;
				break;
3787 3788
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3789 3790 3791
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3792
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3793
		__remove_wait_queue(&x->wait, &wait);
3794 3795
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3796 3797
	}
	x->done--;
3798
	return timeout ?: 1;
L
Linus Torvalds 已提交
3799 3800
}

3801 3802
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3803 3804 3805 3806
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3807
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3808
	spin_unlock_irq(&x->wait.lock);
3809 3810
	return timeout;
}
L
Linus Torvalds 已提交
3811

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3822
void __sched wait_for_completion(struct completion *x)
3823 3824
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3825
}
3826
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3827

3828 3829 3830 3831 3832 3833 3834 3835
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3836 3837 3838
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3839
 */
3840
unsigned long __sched
3841
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3842
{
3843
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3844
}
3845
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3846

3847 3848 3849 3850 3851 3852
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3853 3854
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3855
 */
3856
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3857
{
3858 3859 3860 3861
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3862
}
3863
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3864

3865 3866 3867 3868 3869 3870 3871
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3872 3873 3874
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3875
 */
3876
long __sched
3877 3878
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3879
{
3880
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3881
}
3882
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3883

3884 3885 3886 3887 3888 3889
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3890 3891
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3892
 */
M
Matthew Wilcox 已提交
3893 3894 3895 3896 3897 3898 3899 3900 3901
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3902 3903 3904 3905 3906 3907 3908 3909
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3910 3911 3912
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3913
 */
3914
long __sched
3915 3916 3917 3918 3919 3920 3921
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3936
	unsigned long flags;
3937 3938
	int ret = 1;

3939
	spin_lock_irqsave(&x->wait.lock, flags);
3940 3941 3942 3943
	if (!x->done)
		ret = 0;
	else
		x->done--;
3944
	spin_unlock_irqrestore(&x->wait.lock, flags);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3959
	unsigned long flags;
3960 3961
	int ret = 1;

3962
	spin_lock_irqsave(&x->wait.lock, flags);
3963 3964
	if (!x->done)
		ret = 0;
3965
	spin_unlock_irqrestore(&x->wait.lock, flags);
3966 3967 3968 3969
	return ret;
}
EXPORT_SYMBOL(completion_done);

3970 3971
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3972
{
I
Ingo Molnar 已提交
3973 3974 3975 3976
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3977

3978
	__set_current_state(state);
L
Linus Torvalds 已提交
3979

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3994 3995 3996
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3997
long __sched
I
Ingo Molnar 已提交
3998
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3999
{
4000
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4001 4002 4003
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4004
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4005
{
4006
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4007 4008 4009
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4010
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4011
{
4012
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4013 4014 4015
}
EXPORT_SYMBOL(sleep_on_timeout);

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4028
void rt_mutex_setprio(struct task_struct *p, int prio)
4029
{
4030
	int oldprio, on_rq, running;
4031
	struct rq *rq;
4032
	const struct sched_class *prev_class;
4033 4034 4035

	BUG_ON(prio < 0 || prio > MAX_PRIO);

4036
	rq = __task_rq_lock(p);
4037

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

4056
	trace_sched_pi_setprio(p, prio);
4057
	oldprio = p->prio;
4058
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
4059
	on_rq = p->on_rq;
4060
	running = task_current(rq, p);
4061
	if (on_rq)
4062
		dequeue_task(rq, p, 0);
4063 4064
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4065 4066 4067 4068 4069 4070

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4071 4072
	p->prio = prio;

4073 4074
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4075
	if (on_rq)
4076
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4077

P
Peter Zijlstra 已提交
4078
	check_class_changed(rq, p, prev_class, oldprio);
4079
out_unlock:
4080
	__task_rq_unlock(rq);
4081 4082
}
#endif
4083
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4084
{
I
Ingo Molnar 已提交
4085
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4086
	unsigned long flags;
4087
	struct rq *rq;
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4100
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4101
	 */
4102
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4103 4104 4105
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
4106
	on_rq = p->on_rq;
4107
	if (on_rq)
4108
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4109 4110

	p->static_prio = NICE_TO_PRIO(nice);
4111
	set_load_weight(p);
4112 4113 4114
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4115

I
Ingo Molnar 已提交
4116
	if (on_rq) {
4117
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4118
		/*
4119 4120
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4121
		 */
4122
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4123 4124 4125
			resched_task(rq->curr);
	}
out_unlock:
4126
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4127 4128 4129
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4130 4131 4132 4133 4134
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4135
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4136
{
4137 4138
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4139

4140
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4141 4142 4143
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4153
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4154
{
4155
	long nice, retval;
L
Linus Torvalds 已提交
4156 4157 4158 4159 4160 4161

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4162 4163
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4164 4165 4166
	if (increment > 40)
		increment = 40;

4167
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4168 4169 4170 4171 4172
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4173 4174 4175
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4194
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4195 4196 4197 4198 4199 4200 4201 4202
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4203
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4204 4205 4206
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4207
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4208 4209 4210 4211 4212 4213 4214

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
4229 4230 4231 4232 4233 4234
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4235
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4236 4237 4238 4239 4240 4241 4242 4243
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4244
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4245
{
4246
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4247 4248 4249
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4250 4251
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4252 4253 4254
{
	p->policy = policy;
	p->rt_priority = prio;
4255 4256 4257
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4258 4259 4260 4261
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4262
	set_load_weight(p);
L
Linus Torvalds 已提交
4263 4264
}

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4275 4276
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4277 4278 4279 4280
	rcu_read_unlock();
	return match;
}

4281
static int __sched_setscheduler(struct task_struct *p, int policy,
4282
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4283
{
4284
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4285
	unsigned long flags;
4286
	const struct sched_class *prev_class;
4287
	struct rq *rq;
4288
	int reset_on_fork;
L
Linus Torvalds 已提交
4289

4290 4291
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4292 4293
recheck:
	/* double check policy once rq lock held */
4294 4295
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4296
		policy = oldpolicy = p->policy;
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4307 4308
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4309 4310
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4311 4312
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4313
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4314
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4315
		return -EINVAL;
4316
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4317 4318
		return -EINVAL;

4319 4320 4321
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4322
	if (user && !capable(CAP_SYS_NICE)) {
4323
		if (rt_policy(policy)) {
4324 4325
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4336

I
Ingo Molnar 已提交
4337
		/*
4338 4339
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4340
		 */
4341 4342 4343 4344
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4345

4346
		/* can't change other user's priorities */
4347
		if (!check_same_owner(p))
4348
			return -EPERM;
4349 4350 4351 4352

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4353
	}
L
Linus Torvalds 已提交
4354

4355
	if (user) {
4356
		retval = security_task_setscheduler(p);
4357 4358 4359 4360
		if (retval)
			return retval;
	}

4361 4362 4363
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4364
	 *
L
Lucas De Marchi 已提交
4365
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4366 4367
	 * runqueue lock must be held.
	 */
4368
	rq = task_rq_lock(p, &flags);
4369

4370 4371 4372 4373
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4374
		task_rq_unlock(rq, p, &flags);
4375 4376 4377
		return -EINVAL;
	}

4378 4379 4380 4381 4382
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
4383
		task_rq_unlock(rq, p, &flags);
4384 4385 4386
		return 0;
	}

4387 4388 4389 4390 4391 4392 4393
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4394 4395
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4396
			task_rq_unlock(rq, p, &flags);
4397 4398 4399 4400 4401
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4402 4403 4404
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4405
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4406 4407
		goto recheck;
	}
P
Peter Zijlstra 已提交
4408
	on_rq = p->on_rq;
4409
	running = task_current(rq, p);
4410
	if (on_rq)
4411
		dequeue_task(rq, p, 0);
4412 4413
	if (running)
		p->sched_class->put_prev_task(rq, p);
4414

4415 4416
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4417
	oldprio = p->prio;
4418
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4419
	__setscheduler(rq, p, policy, param->sched_priority);
4420

4421 4422
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4423
	if (on_rq)
4424
		enqueue_task(rq, p, 0);
4425

P
Peter Zijlstra 已提交
4426
	check_class_changed(rq, p, prev_class, oldprio);
4427
	task_rq_unlock(rq, p, &flags);
4428

4429 4430
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4431 4432
	return 0;
}
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4443
		       const struct sched_param *param)
4444 4445 4446
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4447 4448
EXPORT_SYMBOL_GPL(sched_setscheduler);

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4461
			       const struct sched_param *param)
4462 4463 4464 4465
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4466 4467
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4468 4469 4470
{
	struct sched_param lparam;
	struct task_struct *p;
4471
	int retval;
L
Linus Torvalds 已提交
4472 4473 4474 4475 4476

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4477 4478 4479

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4480
	p = find_process_by_pid(pid);
4481 4482 4483
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4484

L
Linus Torvalds 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4494 4495
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4496
{
4497 4498 4499 4500
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507 4508
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4509
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4510 4511 4512 4513 4514 4515 4516 4517
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4518
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4519
{
4520
	struct task_struct *p;
4521
	int retval;
L
Linus Torvalds 已提交
4522 4523

	if (pid < 0)
4524
		return -EINVAL;
L
Linus Torvalds 已提交
4525 4526

	retval = -ESRCH;
4527
	rcu_read_lock();
L
Linus Torvalds 已提交
4528 4529 4530 4531
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4532 4533
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4534
	}
4535
	rcu_read_unlock();
L
Linus Torvalds 已提交
4536 4537 4538 4539
	return retval;
}

/**
4540
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4541 4542 4543
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4544
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4545 4546
{
	struct sched_param lp;
4547
	struct task_struct *p;
4548
	int retval;
L
Linus Torvalds 已提交
4549 4550

	if (!param || pid < 0)
4551
		return -EINVAL;
L
Linus Torvalds 已提交
4552

4553
	rcu_read_lock();
L
Linus Torvalds 已提交
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4564
	rcu_read_unlock();
L
Linus Torvalds 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4574
	rcu_read_unlock();
L
Linus Torvalds 已提交
4575 4576 4577
	return retval;
}

4578
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4579
{
4580
	cpumask_var_t cpus_allowed, new_mask;
4581 4582
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4583

4584
	get_online_cpus();
4585
	rcu_read_lock();
L
Linus Torvalds 已提交
4586 4587 4588

	p = find_process_by_pid(pid);
	if (!p) {
4589
		rcu_read_unlock();
4590
		put_online_cpus();
L
Linus Torvalds 已提交
4591 4592 4593
		return -ESRCH;
	}

4594
	/* Prevent p going away */
L
Linus Torvalds 已提交
4595
	get_task_struct(p);
4596
	rcu_read_unlock();
L
Linus Torvalds 已提交
4597

4598 4599 4600 4601 4602 4603 4604 4605
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4606
	retval = -EPERM;
4607
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4608 4609
		goto out_unlock;

4610
	retval = security_task_setscheduler(p);
4611 4612 4613
	if (retval)
		goto out_unlock;

4614 4615
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4616
again:
4617
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4618

P
Paul Menage 已提交
4619
	if (!retval) {
4620 4621
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4622 4623 4624 4625 4626
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4627
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4628 4629 4630
			goto again;
		}
	}
L
Linus Torvalds 已提交
4631
out_unlock:
4632 4633 4634 4635
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4636
	put_task_struct(p);
4637
	put_online_cpus();
L
Linus Torvalds 已提交
4638 4639 4640 4641
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4642
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4643
{
4644 4645 4646 4647 4648
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4658 4659
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4660
{
4661
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4662 4663
	int retval;

4664 4665
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4666

4667 4668 4669 4670 4671
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4672 4673
}

4674
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4675
{
4676
	struct task_struct *p;
4677
	unsigned long flags;
L
Linus Torvalds 已提交
4678 4679
	int retval;

4680
	get_online_cpus();
4681
	rcu_read_lock();
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686 4687

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4688 4689 4690 4691
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4692
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4693
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4694
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4695 4696

out_unlock:
4697
	rcu_read_unlock();
4698
	put_online_cpus();
L
Linus Torvalds 已提交
4699

4700
	return retval;
L
Linus Torvalds 已提交
4701 4702 4703 4704 4705 4706 4707 4708
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4709 4710
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4711 4712
{
	int ret;
4713
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4714

A
Anton Blanchard 已提交
4715
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4716 4717
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4718 4719
		return -EINVAL;

4720 4721
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4722

4723 4724
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4725
		size_t retlen = min_t(size_t, len, cpumask_size());
4726 4727

		if (copy_to_user(user_mask_ptr, mask, retlen))
4728 4729
			ret = -EFAULT;
		else
4730
			ret = retlen;
4731 4732
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4733

4734
	return ret;
L
Linus Torvalds 已提交
4735 4736 4737 4738 4739
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4740 4741
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4742
 */
4743
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4744
{
4745
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4746

4747
	schedstat_inc(rq, yld_count);
4748
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4749 4750 4751 4752 4753 4754

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4755
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4756
	do_raw_spin_unlock(&rq->lock);
4757
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4758 4759 4760 4761 4762 4763

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4764 4765 4766 4767 4768
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4769
static void __cond_resched(void)
L
Linus Torvalds 已提交
4770
{
4771
	add_preempt_count(PREEMPT_ACTIVE);
4772
	__schedule();
4773
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4774 4775
}

4776
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4777
{
P
Peter Zijlstra 已提交
4778
	if (should_resched()) {
L
Linus Torvalds 已提交
4779 4780 4781 4782 4783
		__cond_resched();
		return 1;
	}
	return 0;
}
4784
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4785 4786

/*
4787
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4788 4789
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4790
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4791 4792 4793
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4794
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4795
{
P
Peter Zijlstra 已提交
4796
	int resched = should_resched();
J
Jan Kara 已提交
4797 4798
	int ret = 0;

4799 4800
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4801
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4802
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4803
		if (resched)
N
Nick Piggin 已提交
4804 4805 4806
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4807
		ret = 1;
L
Linus Torvalds 已提交
4808 4809
		spin_lock(lock);
	}
J
Jan Kara 已提交
4810
	return ret;
L
Linus Torvalds 已提交
4811
}
4812
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4813

4814
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4815 4816 4817
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4818
	if (should_resched()) {
4819
		local_bh_enable();
L
Linus Torvalds 已提交
4820 4821 4822 4823 4824 4825
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4826
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4827 4828 4829 4830

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4857 4858 4859 4860
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4861 4862
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4897
	if (yielded) {
4898
		schedstat_inc(rq, yld_count);
4899 4900 4901 4902 4903 4904
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4905 4906 4907 4908 4909 4910 4911
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4912
	}
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4925
/*
I
Ingo Molnar 已提交
4926
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4927 4928 4929 4930
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4931
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4932

4933
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4934
	atomic_inc(&rq->nr_iowait);
4935
	blk_flush_plug(current);
4936
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4937
	schedule();
4938
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4939
	atomic_dec(&rq->nr_iowait);
4940
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4941 4942 4943 4944 4945
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4946
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4947 4948
	long ret;

4949
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4950
	atomic_inc(&rq->nr_iowait);
4951
	blk_flush_plug(current);
4952
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4953
	ret = schedule_timeout(timeout);
4954
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4955
	atomic_dec(&rq->nr_iowait);
4956
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4967
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4977
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4978
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4992
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4993 4994 4995 4996 4997 4998 4999 5000 5001
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5002
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5003
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5017
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5018
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5019
{
5020
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5021
	unsigned int time_slice;
5022 5023
	unsigned long flags;
	struct rq *rq;
5024
	int retval;
L
Linus Torvalds 已提交
5025 5026 5027
	struct timespec t;

	if (pid < 0)
5028
		return -EINVAL;
L
Linus Torvalds 已提交
5029 5030

	retval = -ESRCH;
5031
	rcu_read_lock();
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5040 5041
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
5042
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
5043

5044
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5045
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5046 5047
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5048

L
Linus Torvalds 已提交
5049
out_unlock:
5050
	rcu_read_unlock();
L
Linus Torvalds 已提交
5051 5052 5053
	return retval;
}

5054
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5055

5056
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5057 5058
{
	unsigned long free = 0;
5059
	unsigned state;
L
Linus Torvalds 已提交
5060 5061

	state = p->state ? __ffs(p->state) + 1 : 0;
5062
	printk(KERN_INFO "%-15.15s %c", p->comm,
5063
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5064
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5065
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5066
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5067
	else
P
Peter Zijlstra 已提交
5068
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5069 5070
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5071
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5072
	else
P
Peter Zijlstra 已提交
5073
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5074 5075
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5076
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5077
#endif
P
Peter Zijlstra 已提交
5078
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5079
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5080
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5081

5082
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5083 5084
}

I
Ingo Molnar 已提交
5085
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5086
{
5087
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5088

5089
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5090 5091
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5092
#else
P
Peter Zijlstra 已提交
5093 5094
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5095
#endif
5096
	rcu_read_lock();
L
Linus Torvalds 已提交
5097 5098 5099
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5100
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5101 5102
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5103
		if (!state_filter || (p->state & state_filter))
5104
			sched_show_task(p);
L
Linus Torvalds 已提交
5105 5106
	} while_each_thread(g, p);

5107 5108
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5109 5110 5111
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
5112
	rcu_read_unlock();
I
Ingo Molnar 已提交
5113 5114 5115
	/*
	 * Only show locks if all tasks are dumped:
	 */
5116
	if (!state_filter)
I
Ingo Molnar 已提交
5117
		debug_show_all_locks();
L
Linus Torvalds 已提交
5118 5119
}

I
Ingo Molnar 已提交
5120 5121
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5122
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5123 5124
}

5125 5126 5127 5128 5129 5130 5131 5132
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5133
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5134
{
5135
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5136 5137
	unsigned long flags;

5138
	raw_spin_lock_irqsave(&rq->lock, flags);
5139

I
Ingo Molnar 已提交
5140
	__sched_fork(idle);
5141
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5142 5143
	idle->se.exec_start = sched_clock();

5144
	do_set_cpus_allowed(idle, cpumask_of(cpu));
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5156
	__set_task_cpu(idle, cpu);
5157
	rcu_read_unlock();
L
Linus Torvalds 已提交
5158 5159

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
5160 5161
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
5162
#endif
5163
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5164 5165

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5166
	task_thread_info(idle)->preempt_count = 0;
5167

I
Ingo Molnar 已提交
5168 5169 5170 5171
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5172
	ftrace_graph_init_idle_task(idle, cpu);
5173 5174 5175
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5176 5177
}

L
Linus Torvalds 已提交
5178
#ifdef CONFIG_SMP
5179 5180 5181 5182
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
5183 5184

	cpumask_copy(&p->cpus_allowed, new_mask);
5185
	p->nr_cpus_allowed = cpumask_weight(new_mask);
5186 5187
}

L
Linus Torvalds 已提交
5188 5189 5190
/*
 * This is how migration works:
 *
5191 5192 5193 5194 5195 5196
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5197
 *    it and puts it into the right queue.
5198 5199
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5200 5201 5202 5203 5204 5205 5206 5207
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5208
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5209 5210
 * call is not atomic; no spinlocks may be held.
 */
5211
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5212 5213
{
	unsigned long flags;
5214
	struct rq *rq;
5215
	unsigned int dest_cpu;
5216
	int ret = 0;
L
Linus Torvalds 已提交
5217 5218

	rq = task_rq_lock(p, &flags);
5219

5220 5221 5222
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

5223
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5224 5225 5226 5227
		ret = -EINVAL;
		goto out;
	}

5228
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5229 5230 5231 5232
		ret = -EINVAL;
		goto out;
	}

5233
	do_set_cpus_allowed(p, new_mask);
5234

L
Linus Torvalds 已提交
5235
	/* Can the task run on the task's current CPU? If so, we're done */
5236
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5237 5238
		goto out;

5239
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5240
	if (p->on_rq) {
5241
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5242
		/* Need help from migration thread: drop lock and wait. */
5243
		task_rq_unlock(rq, p, &flags);
5244
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5245 5246 5247 5248
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
5249
	task_rq_unlock(rq, p, &flags);
5250

L
Linus Torvalds 已提交
5251 5252
	return ret;
}
5253
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5254 5255

/*
I
Ingo Molnar 已提交
5256
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5257 5258 5259 5260 5261 5262
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5263 5264
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5265
 */
5266
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5267
{
5268
	struct rq *rq_dest, *rq_src;
5269
	int ret = 0;
L
Linus Torvalds 已提交
5270

5271
	if (unlikely(!cpu_active(dest_cpu)))
5272
		return ret;
L
Linus Torvalds 已提交
5273 5274 5275 5276

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

5277
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
5278 5279 5280
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5281
		goto done;
L
Linus Torvalds 已提交
5282
	/* Affinity changed (again). */
5283
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
5284
		goto fail;
L
Linus Torvalds 已提交
5285

5286 5287 5288 5289
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
5290
	if (p->on_rq) {
5291
		dequeue_task(rq_src, p, 0);
5292
		set_task_cpu(p, dest_cpu);
5293
		enqueue_task(rq_dest, p, 0);
5294
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5295
	}
L
Linus Torvalds 已提交
5296
done:
5297
	ret = 1;
L
Linus Torvalds 已提交
5298
fail:
L
Linus Torvalds 已提交
5299
	double_rq_unlock(rq_src, rq_dest);
5300
	raw_spin_unlock(&p->pi_lock);
5301
	return ret;
L
Linus Torvalds 已提交
5302 5303 5304
}

/*
5305 5306 5307
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5308
 */
5309
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5310
{
5311
	struct migration_arg *arg = data;
5312

5313 5314 5315 5316
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5317
	local_irq_disable();
5318
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5319
	local_irq_enable();
L
Linus Torvalds 已提交
5320
	return 0;
5321 5322
}

L
Linus Torvalds 已提交
5323
#ifdef CONFIG_HOTPLUG_CPU
5324

5325
/*
5326 5327
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5328
 */
5329
void idle_task_exit(void)
L
Linus Torvalds 已提交
5330
{
5331
	struct mm_struct *mm = current->active_mm;
5332

5333
	BUG_ON(cpu_online(smp_processor_id()));
5334

5335 5336 5337
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5338 5339 5340 5341 5342 5343 5344 5345 5346
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5347
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5348
{
5349
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5350 5351 5352 5353 5354

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5355
/*
5356
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5357
 */
5358
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5359
{
5360 5361
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5362 5363
}

5364
/*
5365 5366 5367 5368 5369 5370
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5371
 */
5372
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5373
{
5374
	struct rq *rq = cpu_rq(dead_cpu);
5375 5376
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5377 5378

	/*
5379 5380 5381 5382 5383 5384 5385
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5386
	 */
5387
	rq->stop = NULL;
5388

5389 5390 5391
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5392
	for ( ; ; ) {
5393 5394 5395 5396 5397
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5398
			break;
5399

5400
		next = pick_next_task(rq);
5401
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5402
		next->sched_class->put_prev_task(rq, next);
5403

5404 5405 5406 5407 5408 5409 5410
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5411
	}
5412

5413
	rq->stop = stop;
5414
}
5415

L
Linus Torvalds 已提交
5416 5417
#endif /* CONFIG_HOTPLUG_CPU */

5418 5419 5420
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5421 5422
	{
		.procname	= "sched_domain",
5423
		.mode		= 0555,
5424
	},
5425
	{}
5426 5427 5428
};

static struct ctl_table sd_ctl_root[] = {
5429 5430
	{
		.procname	= "kernel",
5431
		.mode		= 0555,
5432 5433
		.child		= sd_ctl_dir,
	},
5434
	{}
5435 5436 5437 5438 5439
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5440
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5441 5442 5443 5444

	return entry;
}

5445 5446
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5447
	struct ctl_table *entry;
5448

5449 5450 5451
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5452
	 * will always be set. In the lowest directory the names are
5453 5454 5455
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5456 5457
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5458 5459 5460
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5461 5462 5463 5464 5465

	kfree(*tablep);
	*tablep = NULL;
}

5466
static void
5467
set_table_entry(struct ctl_table *entry,
5468
		const char *procname, void *data, int maxlen,
5469
		umode_t mode, proc_handler *proc_handler)
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5481
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5482

5483 5484 5485
	if (table == NULL)
		return NULL;

5486
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5487
		sizeof(long), 0644, proc_doulongvec_minmax);
5488
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5489
		sizeof(long), 0644, proc_doulongvec_minmax);
5490
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5491
		sizeof(int), 0644, proc_dointvec_minmax);
5492
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5493
		sizeof(int), 0644, proc_dointvec_minmax);
5494
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5495
		sizeof(int), 0644, proc_dointvec_minmax);
5496
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5497
		sizeof(int), 0644, proc_dointvec_minmax);
5498
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5499
		sizeof(int), 0644, proc_dointvec_minmax);
5500
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5501
		sizeof(int), 0644, proc_dointvec_minmax);
5502
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5503
		sizeof(int), 0644, proc_dointvec_minmax);
5504
	set_table_entry(&table[9], "cache_nice_tries",
5505 5506
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5507
	set_table_entry(&table[10], "flags", &sd->flags,
5508
		sizeof(int), 0644, proc_dointvec_minmax);
5509 5510 5511
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5512 5513 5514 5515

	return table;
}

5516
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5517 5518 5519 5520 5521 5522 5523 5524 5525
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5526 5527
	if (table == NULL)
		return NULL;
5528 5529 5530 5531 5532

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5533
		entry->mode = 0555;
5534 5535 5536 5537 5538 5539 5540 5541
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5542
static void register_sched_domain_sysctl(void)
5543
{
5544
	int i, cpu_num = num_possible_cpus();
5545 5546 5547
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5548 5549 5550
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5551 5552 5553
	if (entry == NULL)
		return;

5554
	for_each_possible_cpu(i) {
5555 5556
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5557
		entry->mode = 0555;
5558
		entry->child = sd_alloc_ctl_cpu_table(i);
5559
		entry++;
5560
	}
5561 5562

	WARN_ON(sd_sysctl_header);
5563 5564
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5565

5566
/* may be called multiple times per register */
5567 5568
static void unregister_sched_domain_sysctl(void)
{
5569 5570
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5571
	sd_sysctl_header = NULL;
5572 5573
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5574
}
5575
#else
5576 5577 5578 5579
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5580 5581 5582 5583
{
}
#endif

5584 5585 5586 5587 5588
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5589
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5609
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5610 5611 5612 5613
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5614 5615 5616 5617
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5618 5619
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5620
{
5621
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5622
	unsigned long flags;
5623
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5624

5625
	switch (action & ~CPU_TASKS_FROZEN) {
5626

L
Linus Torvalds 已提交
5627
	case CPU_UP_PREPARE:
5628
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5629
		break;
5630

L
Linus Torvalds 已提交
5631
	case CPU_ONLINE:
5632
		/* Update our root-domain */
5633
		raw_spin_lock_irqsave(&rq->lock, flags);
5634
		if (rq->rd) {
5635
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5636 5637

			set_rq_online(rq);
5638
		}
5639
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5640
		break;
5641

L
Linus Torvalds 已提交
5642
#ifdef CONFIG_HOTPLUG_CPU
5643
	case CPU_DYING:
5644
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5645
		/* Update our root-domain */
5646
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5647
		if (rq->rd) {
5648
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5649
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5650
		}
5651 5652
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5653
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5654 5655 5656

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5657
		break;
L
Linus Torvalds 已提交
5658 5659
#endif
	}
5660 5661 5662

	update_max_interval();

L
Linus Torvalds 已提交
5663 5664 5665
	return NOTIFY_OK;
}

5666 5667 5668
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5669
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5670
 */
5671
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5672
	.notifier_call = migration_call,
5673
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5674 5675
};

5676 5677 5678 5679
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5680
	case CPU_STARTING:
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5701
static int __init migration_init(void)
L
Linus Torvalds 已提交
5702 5703
{
	void *cpu = (void *)(long)smp_processor_id();
5704
	int err;
5705

5706
	/* Initialize migration for the boot CPU */
5707 5708
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5709 5710
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5711

5712 5713 5714 5715
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5716
	return 0;
L
Linus Torvalds 已提交
5717
}
5718
early_initcall(migration_init);
L
Linus Torvalds 已提交
5719 5720 5721
#endif

#ifdef CONFIG_SMP
5722

5723 5724
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5725
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5726

5727
static __read_mostly int sched_debug_enabled;
5728

5729
static int __init sched_debug_setup(char *str)
5730
{
5731
	sched_debug_enabled = 1;
5732 5733 5734

	return 0;
}
5735 5736 5737 5738 5739 5740
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5741

5742
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5743
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5744
{
I
Ingo Molnar 已提交
5745
	struct sched_group *group = sd->groups;
5746
	char str[256];
L
Linus Torvalds 已提交
5747

R
Rusty Russell 已提交
5748
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5749
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5750 5751 5752 5753

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5754
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5755
		if (sd->parent)
P
Peter Zijlstra 已提交
5756 5757
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5758
		return -1;
N
Nick Piggin 已提交
5759 5760
	}

P
Peter Zijlstra 已提交
5761
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5762

5763
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5764 5765
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5766
	}
5767
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5768 5769
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5770
	}
L
Linus Torvalds 已提交
5771

I
Ingo Molnar 已提交
5772
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5773
	do {
I
Ingo Molnar 已提交
5774
		if (!group) {
P
Peter Zijlstra 已提交
5775 5776
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5777 5778 5779
			break;
		}

5780 5781 5782 5783 5784 5785
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5786 5787 5788
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5789 5790
			break;
		}
L
Linus Torvalds 已提交
5791

5792
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5793 5794
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5795 5796
			break;
		}
L
Linus Torvalds 已提交
5797

5798 5799
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5800 5801
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5802 5803
			break;
		}
L
Linus Torvalds 已提交
5804

5805
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5806

R
Rusty Russell 已提交
5807
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5808

P
Peter Zijlstra 已提交
5809
		printk(KERN_CONT " %s", str);
5810
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5811
			printk(KERN_CONT " (cpu_power = %d)",
5812
				group->sgp->power);
5813
		}
L
Linus Torvalds 已提交
5814

I
Ingo Molnar 已提交
5815 5816
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5817
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5818

5819
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5820
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5821

5822 5823
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5824 5825
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5826 5827
	return 0;
}
L
Linus Torvalds 已提交
5828

I
Ingo Molnar 已提交
5829 5830 5831
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5832

5833
	if (!sched_debug_enabled)
5834 5835
		return;

I
Ingo Molnar 已提交
5836 5837 5838 5839
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5840

I
Ingo Molnar 已提交
5841 5842 5843
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5844
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5845
			break;
L
Linus Torvalds 已提交
5846 5847
		level++;
		sd = sd->parent;
5848
		if (!sd)
I
Ingo Molnar 已提交
5849 5850
			break;
	}
L
Linus Torvalds 已提交
5851
}
5852
#else /* !CONFIG_SCHED_DEBUG */
5853
# define sched_domain_debug(sd, cpu) do { } while (0)
5854 5855 5856 5857
static inline bool sched_debug(void)
{
	return false;
}
5858
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5859

5860
static int sd_degenerate(struct sched_domain *sd)
5861
{
5862
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5863 5864 5865 5866 5867 5868
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5869 5870 5871
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5872 5873 5874 5875 5876
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5877
	if (sd->flags & (SD_WAKE_AFFINE))
5878 5879 5880 5881 5882
		return 0;

	return 1;
}

5883 5884
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5885 5886 5887 5888 5889 5890
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5891
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5892 5893 5894 5895 5896 5897 5898
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5899 5900 5901
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5902 5903
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5904 5905 5906 5907 5908 5909 5910
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5911
static void free_rootdomain(struct rcu_head *rcu)
5912
{
5913
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5914

5915
	cpupri_cleanup(&rd->cpupri);
5916 5917 5918 5919 5920 5921
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5922 5923
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5924
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5925 5926
	unsigned long flags;

5927
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5928 5929

	if (rq->rd) {
I
Ingo Molnar 已提交
5930
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5931

5932
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5933
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5934

5935
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5936

I
Ingo Molnar 已提交
5937 5938 5939 5940 5941 5942 5943
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5944 5945 5946 5947 5948
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5949
	cpumask_set_cpu(rq->cpu, rd->span);
5950
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5951
		set_rq_online(rq);
G
Gregory Haskins 已提交
5952

5953
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5954 5955

	if (old_rd)
5956
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5957 5958
}

5959
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5960 5961 5962
{
	memset(rd, 0, sizeof(*rd));

5963
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5964
		goto out;
5965
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5966
		goto free_span;
5967
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5968
		goto free_online;
5969

5970
	if (cpupri_init(&rd->cpupri) != 0)
5971
		goto free_rto_mask;
5972
	return 0;
5973

5974 5975
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5976 5977 5978 5979
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5980
out:
5981
	return -ENOMEM;
G
Gregory Haskins 已提交
5982 5983
}

5984 5985 5986 5987 5988 5989
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5990 5991
static void init_defrootdomain(void)
{
5992
	init_rootdomain(&def_root_domain);
5993

G
Gregory Haskins 已提交
5994 5995 5996
	atomic_set(&def_root_domain.refcount, 1);
}

5997
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5998 5999 6000 6001 6002 6003 6004
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6005
	if (init_rootdomain(rd) != 0) {
6006 6007 6008
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6009 6010 6011 6012

	return rd;
}

6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

6032 6033 6034
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6035 6036 6037 6038 6039 6040 6041 6042

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6043
		kfree(sd->groups->sgp);
6044
		kfree(sd->groups);
6045
	}
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

6060 6061 6062 6063 6064
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
6065 6066 6067 6068 6069
 * Iterate domains and sched_groups downward, assigning CPUs to be
 * select_idle_sibling() hw buddy.  Cross-wiring hw makes bouncing
 * due to random perturbation self canceling, ie sw buddies pull
 * their counterpart to their CPU's hw counterpart.
 *
6070 6071
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
6072
 * two cpus are in the same cache domain, see cpus_share_cache().
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
	if (sd) {
		struct sched_domain *tmp = sd;
		struct sched_group *sg, *prev;
		bool right;

		/*
		 * Traverse to first CPU in group, and count hops
		 * to cpu from there, switching direction on each
		 * hop, never ever pointing the last CPU rightward.
		 */
		do {
			id = cpumask_first(sched_domain_span(tmp));
			prev = sg = tmp->groups;
			right = 1;

			while (cpumask_first(sched_group_cpus(sg)) != id)
				sg = sg->next;

			while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
				prev = sg;
				sg = sg->next;
				right = !right;
			}

			/* A CPU went down, never point back to domain start. */
			if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
				right = false;

			sg = right ? sg->next : prev;
			tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
		} while ((tmp = tmp->child));

6115
		id = cpumask_first(sched_domain_span(sd));
6116
	}
6117 6118 6119 6120 6121

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
6122
/*
I
Ingo Molnar 已提交
6123
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6124 6125
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6126 6127
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6128
{
6129
	struct rq *rq = cpu_rq(cpu);
6130 6131 6132
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6133
	for (tmp = sd; tmp; ) {
6134 6135 6136
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6137

6138
		if (sd_parent_degenerate(tmp, parent)) {
6139
			tmp->parent = parent->parent;
6140 6141
			if (parent->parent)
				parent->parent->child = tmp;
6142
			destroy_sched_domain(parent, cpu);
6143 6144
		} else
			tmp = tmp->parent;
6145 6146
	}

6147
	if (sd && sd_degenerate(sd)) {
6148
		tmp = sd;
6149
		sd = sd->parent;
6150
		destroy_sched_domain(tmp, cpu);
6151 6152 6153
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6154

6155
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6156

G
Gregory Haskins 已提交
6157
	rq_attach_root(rq, rd);
6158
	tmp = rq->sd;
N
Nick Piggin 已提交
6159
	rcu_assign_pointer(rq->sd, sd);
6160
	destroy_sched_domains(tmp, cpu);
6161 6162

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6163 6164 6165
}

/* cpus with isolated domains */
6166
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6167 6168 6169 6170

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6171
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6172
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6173 6174 6175
	return 1;
}

I
Ingo Molnar 已提交
6176
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6177

6178 6179 6180 6181 6182
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

6183 6184 6185
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
6186
	struct sched_group_power **__percpu sgp;
6187 6188
};

6189
struct s_data {
6190
	struct sched_domain ** __percpu sd;
6191 6192 6193
	struct root_domain	*rd;
};

6194 6195
enum s_alloc {
	sa_rootdomain,
6196
	sa_sd,
6197
	sa_sd_storage,
6198 6199 6200
	sa_none,
};

6201 6202 6203
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6204 6205
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

6206 6207
#define SDTL_OVERLAP	0x01

6208
struct sched_domain_topology_level {
6209 6210
	sched_domain_init_f init;
	sched_domain_mask_f mask;
6211
	int		    flags;
6212
	int		    numa_level;
6213
	struct sd_data      data;
6214 6215
};

P
Peter Zijlstra 已提交
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
6272 6273 6274 6275 6276 6277
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

6278
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6279
				GFP_KERNEL, cpu_to_node(cpu));
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
6293
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
6294 6295 6296
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

6297 6298 6299 6300 6301 6302
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6303

P
Peter Zijlstra 已提交
6304 6305 6306 6307 6308
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6309
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6310
		    group_balance_cpu(sg) == cpu)
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6330
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6331
{
6332 6333
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6334

6335 6336
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6337

6338
	if (sg) {
6339
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6340
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6341
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6342
	}
6343 6344

	return cpu;
6345 6346
}

6347
/*
6348 6349 6350
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6351 6352
 *
 * Assumes the sched_domain tree is fully constructed
6353
 */
6354 6355
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6356
{
6357 6358 6359
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6360
	struct cpumask *covered;
6361
	int i;
6362

6363 6364 6365 6366 6367 6368
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6369 6370 6371
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6372
	cpumask_clear(covered);
6373

6374 6375 6376 6377
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6378

6379 6380
		if (cpumask_test_cpu(i, covered))
			continue;
6381

6382
		cpumask_clear(sched_group_cpus(sg));
6383
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
6384
		cpumask_setall(sched_group_mask(sg));
6385

6386 6387 6388
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6389

6390 6391 6392
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6393

6394 6395 6396 6397 6398 6399 6400
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6401 6402

	return 0;
6403
}
6404

6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6417
	struct sched_group *sg = sd->groups;
6418

6419 6420 6421 6422 6423 6424
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6425

P
Peter Zijlstra 已提交
6426
	if (cpu != group_balance_cpu(sg))
6427
		return;
6428

6429
	update_group_power(sd, cpu);
6430
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6431 6432
}

6433 6434 6435
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6436 6437
}

6438 6439 6440 6441 6442
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6443 6444 6445 6446 6447 6448
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6449 6450 6451 6452 6453 6454 6455 6456 6457
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6458 6459 6460 6461 6462 6463 6464 6465 6466
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6467 6468 6469
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6470

6471
static int default_relax_domain_level = -1;
6472
int sched_domain_level_max;
6473 6474 6475

static int __init setup_relax_domain_level(char *str)
{
6476 6477
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6478

6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6497
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6498 6499
	} else {
		/* turn on idle balance on this domain */
6500
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6501 6502 6503
	}
}

6504 6505 6506
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6507 6508 6509 6510 6511
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6512 6513
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6514 6515
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6516
	case sa_sd_storage:
6517
		__sdt_free(cpu_map); /* fall through */
6518 6519 6520 6521
	case sa_none:
		break;
	}
}
6522

6523 6524 6525
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6526 6527
	memset(d, 0, sizeof(*d));

6528 6529
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6530 6531 6532
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6533
	d->rd = alloc_rootdomain();
6534
	if (!d->rd)
6535
		return sa_sd;
6536 6537
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6538

6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6551
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6552
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6553 6554

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6555
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6556 6557
}

6558 6559
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6560
{
6561
	return topology_thread_cpumask(cpu);
6562
}
6563
#endif
6564

6565 6566 6567
/*
 * Topology list, bottom-up.
 */
6568
static struct sched_domain_topology_level default_topology[] = {
6569 6570
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6571
#endif
6572
#ifdef CONFIG_SCHED_MC
6573
	{ sd_init_MC, cpu_coregroup_mask, },
6574
#endif
6575 6576 6577 6578
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6579 6580 6581 6582 6583
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6584 6585 6586 6587 6588 6589 6590 6591 6592
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6593
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6611
		.imbalance_pct		= 125,
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_PREFER_LOCAL
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6732
		}
6733 6734 6735 6736 6737 6738

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6763
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6764 6765 6766 6767 6768 6769
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6770
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
}
#else
static inline void sched_init_numa(void)
{
}
#endif /* CONFIG_NUMA */

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6825 6826 6827 6828
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6829 6830 6831
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6832
			struct sched_group_power *sgp;
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6846 6847
			sg->next = sg;

6848
			*per_cpu_ptr(sdd->sg, j) = sg;
6849

P
Peter Zijlstra 已提交
6850
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6851 6852 6853 6854 6855
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6884 6885
		}
		free_percpu(sdd->sd);
6886
		sdd->sd = NULL;
6887
		free_percpu(sdd->sg);
6888
		sdd->sg = NULL;
6889
		free_percpu(sdd->sgp);
6890
		sdd->sgp = NULL;
6891 6892 6893
	}
}

6894 6895
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6896
		struct sched_domain_attr *attr, struct sched_domain *child,
6897 6898
		int cpu)
{
6899
	struct sched_domain *sd = tl->init(tl, cpu);
6900
	if (!sd)
6901
		return child;
6902 6903

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6904 6905 6906
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6907
		child->parent = sd;
6908
	}
6909
	sd->child = child;
6910
	set_domain_attribute(sd, attr);
6911 6912 6913 6914

	return sd;
}

6915 6916 6917 6918
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6919 6920
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6921 6922
{
	enum s_alloc alloc_state = sa_none;
6923
	struct sched_domain *sd;
6924
	struct s_data d;
6925
	int i, ret = -ENOMEM;
6926

6927 6928 6929
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6930

6931
	/* Set up domains for cpus specified by the cpu_map. */
6932
	for_each_cpu(i, cpu_map) {
6933 6934
		struct sched_domain_topology_level *tl;

6935
		sd = NULL;
6936
		for (tl = sched_domain_topology; tl->init; tl++) {
6937
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6938 6939
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6940 6941
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6942
		}
6943

6944 6945 6946
		while (sd->child)
			sd = sd->child;

6947
		*per_cpu_ptr(d.sd, i) = sd;
6948 6949 6950 6951 6952 6953
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6954 6955 6956 6957 6958 6959 6960
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6961
		}
6962
	}
6963

L
Linus Torvalds 已提交
6964
	/* Calculate CPU power for physical packages and nodes */
6965 6966 6967
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6968

6969 6970
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6971
			init_sched_groups_power(i, sd);
6972
		}
6973
	}
6974

L
Linus Torvalds 已提交
6975
	/* Attach the domains */
6976
	rcu_read_lock();
6977
	for_each_cpu(i, cpu_map) {
6978
		sd = *per_cpu_ptr(d.sd, i);
6979
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6980
	}
6981
	rcu_read_unlock();
6982

6983
	ret = 0;
6984
error:
6985
	__free_domain_allocs(&d, alloc_state, cpu_map);
6986
	return ret;
L
Linus Torvalds 已提交
6987
}
P
Paul Jackson 已提交
6988

6989
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6990
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6991 6992
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6993 6994 6995

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6996 6997
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6998
 */
6999
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7000

7001 7002 7003 7004 7005 7006
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7007
{
7008
	return 0;
7009 7010
}

7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7036
/*
I
Ingo Molnar 已提交
7037
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7038 7039
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7040
 */
7041
static int init_sched_domains(const struct cpumask *cpu_map)
7042
{
7043 7044
	int err;

7045
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7046
	ndoms_cur = 1;
7047
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7048
	if (!doms_cur)
7049 7050
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7051
	err = build_sched_domains(doms_cur[0], NULL);
7052
	register_sched_domain_sysctl();
7053 7054

	return err;
7055 7056 7057 7058 7059 7060
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7061
static void detach_destroy_domains(const struct cpumask *cpu_map)
7062 7063 7064
{
	int i;

7065
	rcu_read_lock();
7066
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7067
		cpu_attach_domain(NULL, &def_root_domain, i);
7068
	rcu_read_unlock();
7069 7070
}

7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7087 7088
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7089
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7090 7091 7092
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7093
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7094 7095 7096
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7097 7098 7099
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7100 7101 7102 7103 7104 7105
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7106
 *
7107
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7108 7109
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7110
 *
P
Paul Jackson 已提交
7111 7112
 * Call with hotplug lock held
 */
7113
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7114
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7115
{
7116
	int i, j, n;
7117
	int new_topology;
P
Paul Jackson 已提交
7118

7119
	mutex_lock(&sched_domains_mutex);
7120

7121 7122 7123
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7124 7125 7126
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7127
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7128 7129 7130

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7131
		for (j = 0; j < n && !new_topology; j++) {
7132
			if (cpumask_equal(doms_cur[i], doms_new[j])
7133
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7134 7135 7136
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7137
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7138 7139 7140 7141
match1:
		;
	}

7142 7143
	if (doms_new == NULL) {
		ndoms_cur = 0;
7144
		doms_new = &fallback_doms;
7145
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7146
		WARN_ON_ONCE(dattr_new);
7147 7148
	}

P
Paul Jackson 已提交
7149 7150
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7151
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7152
			if (cpumask_equal(doms_new[i], doms_cur[j])
7153
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7154 7155 7156
				goto match2;
		}
		/* no match - add a new doms_new */
7157
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7158 7159 7160 7161 7162
match2:
		;
	}

	/* Remember the new sched domains */
7163 7164
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7165
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7166
	doms_cur = doms_new;
7167
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7168
	ndoms_cur = ndoms_new;
7169 7170

	register_sched_domain_sysctl();
7171

7172
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7173 7174
}

7175 7176
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7177
/*
7178 7179 7180
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7181 7182 7183
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7184
 */
7185 7186
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7187
{
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7210
	case CPU_ONLINE:
7211
	case CPU_DOWN_FAILED:
7212
		cpuset_update_active_cpus(true);
7213
		break;
7214 7215 7216
	default:
		return NOTIFY_DONE;
	}
7217
	return NOTIFY_OK;
7218
}
7219

7220 7221
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7222
{
7223
	switch (action) {
7224
	case CPU_DOWN_PREPARE:
7225
		cpuset_update_active_cpus(false);
7226 7227 7228 7229 7230
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7231 7232 7233
	default:
		return NOTIFY_DONE;
	}
7234
	return NOTIFY_OK;
7235 7236
}

L
Linus Torvalds 已提交
7237 7238
void __init sched_init_smp(void)
{
7239 7240 7241
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7242
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7243

7244 7245
	sched_init_numa();

7246
	get_online_cpus();
7247
	mutex_lock(&sched_domains_mutex);
7248
	init_sched_domains(cpu_active_mask);
7249 7250 7251
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7252
	mutex_unlock(&sched_domains_mutex);
7253
	put_online_cpus();
7254

7255 7256
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7257 7258 7259 7260

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7261
	init_hrtick();
7262 7263

	/* Move init over to a non-isolated CPU */
7264
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7265
		BUG();
I
Ingo Molnar 已提交
7266
	sched_init_granularity();
7267
	free_cpumask_var(non_isolated_cpus);
7268

7269
	init_sched_rt_class();
L
Linus Torvalds 已提交
7270 7271 7272 7273
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7274
	sched_init_granularity();
L
Linus Torvalds 已提交
7275 7276 7277
}
#endif /* CONFIG_SMP */

7278 7279
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7280 7281 7282 7283 7284 7285 7286
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7287 7288
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
7289
LIST_HEAD(task_groups);
7290
#endif
P
Peter Zijlstra 已提交
7291

7292
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
7293

L
Linus Torvalds 已提交
7294 7295
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7296
	int i, j;
7297 7298 7299 7300 7301 7302 7303
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7304
#endif
7305
#ifdef CONFIG_CPUMASK_OFFSTACK
7306
	alloc_size += num_possible_cpus() * cpumask_size();
7307 7308
#endif
	if (alloc_size) {
7309
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7310 7311

#ifdef CONFIG_FAIR_GROUP_SCHED
7312
		root_task_group.se = (struct sched_entity **)ptr;
7313 7314
		ptr += nr_cpu_ids * sizeof(void **);

7315
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7316
		ptr += nr_cpu_ids * sizeof(void **);
7317

7318
#endif /* CONFIG_FAIR_GROUP_SCHED */
7319
#ifdef CONFIG_RT_GROUP_SCHED
7320
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7321 7322
		ptr += nr_cpu_ids * sizeof(void **);

7323
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7324 7325
		ptr += nr_cpu_ids * sizeof(void **);

7326
#endif /* CONFIG_RT_GROUP_SCHED */
7327 7328 7329 7330 7331 7332
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7333
	}
I
Ingo Molnar 已提交
7334

G
Gregory Haskins 已提交
7335 7336 7337 7338
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7339 7340 7341 7342
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
7343
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7344
			global_rt_period(), global_rt_runtime());
7345
#endif /* CONFIG_RT_GROUP_SCHED */
7346

D
Dhaval Giani 已提交
7347
#ifdef CONFIG_CGROUP_SCHED
7348 7349
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7350
	INIT_LIST_HEAD(&root_task_group.siblings);
7351
	autogroup_init(&init_task);
7352

D
Dhaval Giani 已提交
7353
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7354

7355 7356 7357 7358 7359 7360
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
7361
	for_each_possible_cpu(i) {
7362
		struct rq *rq;
L
Linus Torvalds 已提交
7363 7364

		rq = cpu_rq(i);
7365
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7366
		rq->nr_running = 0;
7367 7368
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7369
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
7370
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7371
#ifdef CONFIG_FAIR_GROUP_SCHED
7372
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7373
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7374
		/*
7375
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7376 7377 7378 7379
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7380
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7381 7382 7383
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7384
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7385 7386 7387
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7388
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7389
		 *
7390 7391
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7392
		 */
7393
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7394
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7395 7396 7397
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7398
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7399
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7400
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7401
#endif
L
Linus Torvalds 已提交
7402

I
Ingo Molnar 已提交
7403 7404
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7405 7406 7407

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7408
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7409
		rq->sd = NULL;
G
Gregory Haskins 已提交
7410
		rq->rd = NULL;
7411
		rq->cpu_power = SCHED_POWER_SCALE;
7412
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7413
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7414
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7415
		rq->push_cpu = 0;
7416
		rq->cpu = i;
7417
		rq->online = 0;
7418 7419
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7420 7421 7422

		INIT_LIST_HEAD(&rq->cfs_tasks);

7423
		rq_attach_root(rq, &def_root_domain);
7424
#ifdef CONFIG_NO_HZ
7425
		rq->nohz_flags = 0;
7426
#endif
L
Linus Torvalds 已提交
7427
#endif
P
Peter Zijlstra 已提交
7428
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7429 7430 7431
		atomic_set(&rq->nr_iowait, 0);
	}

7432
	set_load_weight(&init_task);
7433

7434 7435 7436 7437
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7438
#ifdef CONFIG_RT_MUTEXES
7439
	plist_head_init(&init_task.pi_waiters);
7440 7441
#endif

L
Linus Torvalds 已提交
7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7455 7456 7457

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7458 7459 7460 7461
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7462

7463
#ifdef CONFIG_SMP
7464
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7465 7466 7467
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7468
	idle_thread_set_boot_cpu();
7469 7470
#endif
	init_sched_fair_class();
7471

7472
	scheduler_running = 1;
L
Linus Torvalds 已提交
7473 7474
}

7475
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7476 7477
static inline int preempt_count_equals(int preempt_offset)
{
7478
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7479

A
Arnd Bergmann 已提交
7480
	return (nested == preempt_offset);
7481 7482
}

7483
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7484 7485 7486
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7487
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7488 7489
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7490 7491 7492 7493 7494
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7495 7496 7497 7498 7499 7500 7501
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7502 7503 7504 7505 7506

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7507 7508 7509 7510 7511
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7512 7513
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7514 7515
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7516
	int on_rq;
7517

P
Peter Zijlstra 已提交
7518
	on_rq = p->on_rq;
7519
	if (on_rq)
7520
		dequeue_task(rq, p, 0);
7521 7522
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7523
		enqueue_task(rq, p, 0);
7524 7525
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7526 7527

	check_class_changed(rq, p, prev_class, old_prio);
7528 7529
}

L
Linus Torvalds 已提交
7530 7531
void normalize_rt_tasks(void)
{
7532
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7533
	unsigned long flags;
7534
	struct rq *rq;
L
Linus Torvalds 已提交
7535

7536
	read_lock_irqsave(&tasklist_lock, flags);
7537
	do_each_thread(g, p) {
7538 7539 7540 7541 7542 7543
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7544 7545
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7546 7547 7548
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7549
#endif
I
Ingo Molnar 已提交
7550 7551 7552 7553 7554 7555 7556 7557

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7558
			continue;
I
Ingo Molnar 已提交
7559
		}
L
Linus Torvalds 已提交
7560

7561
		raw_spin_lock(&p->pi_lock);
7562
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7563

7564
		normalize_task(rq, p);
7565

7566
		__task_rq_unlock(rq);
7567
		raw_spin_unlock(&p->pi_lock);
7568 7569
	} while_each_thread(g, p);

7570
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7571 7572 7573
}

#endif /* CONFIG_MAGIC_SYSRQ */
7574

7575
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7576
/*
7577
 * These functions are only useful for the IA64 MCA handling, or kdb.
7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7592
struct task_struct *curr_task(int cpu)
7593 7594 7595 7596
{
	return cpu_curr(cpu);
}

7597 7598 7599
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7600 7601 7602 7603 7604 7605
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7606 7607
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7608 7609 7610 7611 7612 7613 7614
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7615
void set_curr_task(int cpu, struct task_struct *p)
7616 7617 7618 7619 7620
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7621

D
Dhaval Giani 已提交
7622
#ifdef CONFIG_CGROUP_SCHED
7623 7624 7625
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7626 7627 7628 7629
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7630
	autogroup_free(tg);
7631 7632 7633 7634
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7635
struct task_group *sched_create_group(struct task_group *parent)
7636 7637 7638 7639 7640 7641 7642 7643
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7644
	if (!alloc_fair_sched_group(tg, parent))
7645 7646
		goto err;

7647
	if (!alloc_rt_sched_group(tg, parent))
7648 7649
		goto err;

7650
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7651
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7652 7653 7654 7655 7656

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7657
	list_add_rcu(&tg->siblings, &parent->children);
7658
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7659

7660
	return tg;
S
Srivatsa Vaddagiri 已提交
7661 7662

err:
P
Peter Zijlstra 已提交
7663
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7664 7665 7666
	return ERR_PTR(-ENOMEM);
}

7667
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7668
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7669 7670
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7671
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7672 7673
}

7674
/* Destroy runqueue etc associated with a task group */
7675
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7676
{
7677
	unsigned long flags;
7678
	int i;
S
Srivatsa Vaddagiri 已提交
7679

7680 7681
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7682
		unregister_fair_sched_group(tg, i);
7683 7684

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7685
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7686
	list_del_rcu(&tg->siblings);
7687
	spin_unlock_irqrestore(&task_group_lock, flags);
7688 7689

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7690
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7691 7692
}

7693
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7694 7695 7696
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7697 7698
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7699
{
P
Peter Zijlstra 已提交
7700
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7701 7702 7703 7704 7705 7706
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7707
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7708
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7709

7710
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7711
		dequeue_task(rq, tsk, 0);
7712 7713
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7714

P
Peter Zijlstra 已提交
7715 7716 7717 7718 7719 7720
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7721
#ifdef CONFIG_FAIR_GROUP_SCHED
7722 7723 7724
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7725
#endif
7726
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7727

7728 7729 7730
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7731
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7732

7733
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7734
}
D
Dhaval Giani 已提交
7735
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7736

7737
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7738 7739 7740
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7741
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7742

P
Peter Zijlstra 已提交
7743
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7744
}
7745 7746 7747 7748 7749 7750 7751
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7752

P
Peter Zijlstra 已提交
7753 7754
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7755
{
P
Peter Zijlstra 已提交
7756
	struct task_struct *g, *p;
7757

P
Peter Zijlstra 已提交
7758
	do_each_thread(g, p) {
7759
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7760 7761
			return 1;
	} while_each_thread(g, p);
7762

P
Peter Zijlstra 已提交
7763 7764
	return 0;
}
7765

P
Peter Zijlstra 已提交
7766 7767 7768 7769 7770
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7771

7772
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7773 7774 7775 7776 7777
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7778

P
Peter Zijlstra 已提交
7779 7780
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7781

P
Peter Zijlstra 已提交
7782 7783 7784
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7785 7786
	}

7787 7788 7789 7790 7791
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7792

7793 7794 7795
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7796 7797
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7798

P
Peter Zijlstra 已提交
7799
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7800

7801 7802 7803 7804 7805
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7806

7807 7808 7809
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7810 7811 7812
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7813

P
Peter Zijlstra 已提交
7814 7815 7816 7817
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7818

P
Peter Zijlstra 已提交
7819
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7820
	}
P
Peter Zijlstra 已提交
7821

P
Peter Zijlstra 已提交
7822 7823 7824 7825
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7826 7827
}

P
Peter Zijlstra 已提交
7828
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7829
{
7830 7831
	int ret;

P
Peter Zijlstra 已提交
7832 7833 7834 7835 7836 7837
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7838 7839 7840 7841 7842
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7843 7844
}

7845
static int tg_set_rt_bandwidth(struct task_group *tg,
7846
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7847
{
P
Peter Zijlstra 已提交
7848
	int i, err = 0;
P
Peter Zijlstra 已提交
7849 7850

	mutex_lock(&rt_constraints_mutex);
7851
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7852 7853
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7854
		goto unlock;
P
Peter Zijlstra 已提交
7855

7856
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7857 7858
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7859 7860 7861 7862

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7863
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7864
		rt_rq->rt_runtime = rt_runtime;
7865
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7866
	}
7867
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7868
unlock:
7869
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7870 7871 7872
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7873 7874
}

7875 7876 7877 7878 7879 7880 7881 7882 7883
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7884
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7885 7886
}

P
Peter Zijlstra 已提交
7887 7888 7889 7890
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7891
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7892 7893
		return -1;

7894
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7895 7896 7897
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7898 7899 7900 7901 7902 7903 7904 7905

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7906 7907 7908
	if (rt_period == 0)
		return -EINVAL;

7909
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7923
	u64 runtime, period;
7924 7925
	int ret = 0;

7926 7927 7928
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7929 7930 7931 7932 7933 7934 7935 7936
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7937

7938
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7939
	read_lock(&tasklist_lock);
7940
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7941
	read_unlock(&tasklist_lock);
7942 7943 7944 7945
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7956
#else /* !CONFIG_RT_GROUP_SCHED */
7957 7958
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7959 7960 7961
	unsigned long flags;
	int i;

7962 7963 7964
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7965 7966 7967 7968 7969 7970 7971
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7972
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7973 7974 7975
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7976
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7977
		rt_rq->rt_runtime = global_rt_runtime();
7978
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7979
	}
7980
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7981

7982 7983
	return 0;
}
7984
#endif /* CONFIG_RT_GROUP_SCHED */
7985 7986

int sched_rt_handler(struct ctl_table *table, int write,
7987
		void __user *buffer, size_t *lenp,
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7998
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8015

8016
#ifdef CONFIG_CGROUP_SCHED
8017 8018

/* return corresponding task_group object of a cgroup */
8019
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8020
{
8021 8022
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8023 8024
}

8025
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
8026
{
8027
	struct task_group *tg, *parent;
8028

8029
	if (!cgrp->parent) {
8030
		/* This is early initialization for the top cgroup */
8031
		return &root_task_group.css;
8032 8033
	}

8034 8035
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8036 8037 8038 8039 8040 8041
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

8042
static void cpu_cgroup_destroy(struct cgroup *cgrp)
8043
{
8044
	struct task_group *tg = cgroup_tg(cgrp);
8045 8046 8047 8048

	sched_destroy_group(tg);
}

8049
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
8050
				 struct cgroup_taskset *tset)
8051
{
8052 8053 8054
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
8055
#ifdef CONFIG_RT_GROUP_SCHED
8056 8057
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
8058
#else
8059 8060 8061
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8062
#endif
8063
	}
8064 8065
	return 0;
}
8066

8067
static void cpu_cgroup_attach(struct cgroup *cgrp,
8068
			      struct cgroup_taskset *tset)
8069
{
8070 8071 8072 8073
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
8074 8075
}

8076
static void
8077 8078
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8091
#ifdef CONFIG_FAIR_GROUP_SCHED
8092
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8093
				u64 shareval)
8094
{
8095
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8096 8097
}

8098
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8099
{
8100
	struct task_group *tg = cgroup_tg(cgrp);
8101

8102
	return (u64) scale_load_down(tg->shares);
8103
}
8104 8105

#ifdef CONFIG_CFS_BANDWIDTH
8106 8107
static DEFINE_MUTEX(cfs_constraints_mutex);

8108 8109 8110
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8111 8112
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8113 8114
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8115
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8116
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8137 8138 8139 8140 8141
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8142
	runtime_enabled = quota != RUNTIME_INF;
8143 8144
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
8145 8146 8147
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8148

P
Paul Turner 已提交
8149
	__refill_cfs_bandwidth_runtime(cfs_b);
8150 8151 8152 8153 8154 8155
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
8156 8157 8158 8159
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8160
		struct rq *rq = cfs_rq->rq;
8161 8162

		raw_spin_lock_irq(&rq->lock);
8163
		cfs_rq->runtime_enabled = runtime_enabled;
8164
		cfs_rq->runtime_remaining = 0;
8165

8166
		if (cfs_rq->throttled)
8167
			unthrottle_cfs_rq(cfs_rq);
8168 8169
		raw_spin_unlock_irq(&rq->lock);
	}
8170 8171
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8172

8173
	return ret;
8174 8175 8176 8177 8178 8179
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8180
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8193
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8194 8195
		return -1;

8196
	quota_us = tg->cfs_bandwidth.quota;
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8207
	quota = tg->cfs_bandwidth.quota;
8208 8209 8210 8211 8212 8213 8214 8215

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8216
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8276
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8277 8278 8279 8280 8281
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8282
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8303
	int ret;
8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8315 8316 8317 8318 8319
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8320
}
8321 8322 8323 8324 8325

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
8326
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8327 8328 8329 8330 8331 8332 8333

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
8334
#endif /* CONFIG_CFS_BANDWIDTH */
8335
#endif /* CONFIG_FAIR_GROUP_SCHED */
8336

8337
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8338
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8339
				s64 val)
P
Peter Zijlstra 已提交
8340
{
8341
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8342 8343
}

8344
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8345
{
8346
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8347
}
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8359
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8360

8361
static struct cftype cpu_files[] = {
8362
#ifdef CONFIG_FAIR_GROUP_SCHED
8363 8364
	{
		.name = "shares",
8365 8366
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8367
	},
8368
#endif
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8380 8381 8382 8383
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8384
#endif
8385
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8386
	{
P
Peter Zijlstra 已提交
8387
		.name = "rt_runtime_us",
8388 8389
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8390
	},
8391 8392
	{
		.name = "rt_period_us",
8393 8394
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8395
	},
8396
#endif
8397
	{ }	/* terminate */
8398 8399 8400
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8401 8402 8403
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
8404 8405
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8406
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8407
	.subsys_id	= cpu_cgroup_subsys_id,
8408
	.base_cftypes	= cpu_files,
8409 8410 8411
	.early_init	= 1,
};

8412
#endif	/* CONFIG_CGROUP_SCHED */
8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
8424
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8425
{
8426
	struct cpuacct *ca;
8427

8428 8429 8430 8431
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8432
	if (!ca)
8433
		goto out;
8434 8435

	ca->cpuusage = alloc_percpu(u64);
8436 8437 8438
	if (!ca->cpuusage)
		goto out_free_ca;

8439 8440 8441
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8442

8443
	return &ca->css;
8444

8445
out_free_cpuusage:
8446 8447 8448 8449 8450
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8451 8452 8453
}

/* destroy an existing cpu accounting group */
8454
static void cpuacct_destroy(struct cgroup *cgrp)
8455
{
8456
	struct cpuacct *ca = cgroup_ca(cgrp);
8457

8458
	free_percpu(ca->cpustat);
8459 8460 8461 8462
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8463 8464
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8465
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8466 8467 8468 8469 8470 8471
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8472
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8473
	data = *cpuusage;
8474
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8475 8476 8477 8478 8479 8480 8481 8482 8483
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8484
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8485 8486 8487 8488 8489

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8490
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8491
	*cpuusage = val;
8492
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8493 8494 8495 8496 8497
#else
	*cpuusage = val;
#endif
}

8498
/* return total cpu usage (in nanoseconds) of a group */
8499
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8500
{
8501
	struct cpuacct *ca = cgroup_ca(cgrp);
8502 8503 8504
	u64 totalcpuusage = 0;
	int i;

8505 8506
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8507 8508 8509 8510

	return totalcpuusage;
}

8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8523 8524
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8525 8526 8527 8528 8529

out:
	return err;
}

8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8545 8546 8547 8548 8549 8550
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8551
			      struct cgroup_map_cb *cb)
8552 8553
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8554 8555
	int cpu;
	s64 val = 0;
8556

8557 8558 8559 8560
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8561
	}
8562 8563
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8564

8565 8566 8567 8568 8569 8570
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8571
	}
8572 8573 8574 8575

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8576 8577 8578
	return 0;
}

8579 8580 8581
static struct cftype files[] = {
	{
		.name = "usage",
8582 8583
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8584
	},
8585 8586 8587 8588
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8589 8590 8591 8592
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8593
	{ }	/* terminate */
8594 8595 8596 8597 8598 8599 8600
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8601
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8602 8603
{
	struct cpuacct *ca;
8604
	int cpu;
8605

L
Li Zefan 已提交
8606
	if (unlikely(!cpuacct_subsys.active))
8607 8608
		return;

8609
	cpu = task_cpu(tsk);
8610 8611 8612

	rcu_read_lock();

8613 8614
	ca = task_ca(tsk);

8615
	for (; ca; ca = parent_ca(ca)) {
8616
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8617 8618
		*cpuusage += cputime;
	}
8619 8620

	rcu_read_unlock();
8621 8622 8623 8624 8625 8626 8627
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8628
	.base_cftypes = files,
8629 8630
};
#endif	/* CONFIG_CGROUP_CPUACCT */