book3s_hv.c 62.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35 36 37 38 39 40 41 42 43 44 45 46

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
47
#include <asm/cputhreads.h>
48
#include <asm/page.h>
49
#include <asm/hvcall.h>
50
#include <asm/switch_to.h>
51
#include <asm/smp.h>
52 53 54
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
55
#include <linux/hugetlb.h>
56
#include <linux/module.h>
57

58 59
#include "book3s.h"

60 61 62 63
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

64 65 66
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

67 68 69
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

70
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
71
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
72

73
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
{
	int me;
	int cpu = vcpu->cpu;
	wait_queue_head_t *wqp;

	wqp = kvm_arch_vcpu_wq(vcpu);
	if (waitqueue_active(wqp)) {
		wake_up_interruptible(wqp);
		++vcpu->stat.halt_wakeup;
	}

	me = get_cpu();

	/* CPU points to the first thread of the core */
	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
89
#ifdef CONFIG_PPC_ICP_NATIVE
90 91 92
		int real_cpu = cpu + vcpu->arch.ptid;
		if (paca[real_cpu].kvm_hstate.xics_phys)
			xics_wake_cpu(real_cpu);
93 94 95
		else
#endif
		if (cpu_online(cpu))
96 97 98 99 100
			smp_send_reschedule(cpu);
	}
	put_cpu();
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
 * of the vcpu that has taken responsibility for running the vcore
 * (i.e. vc->runner).  The stolen times are measured in units of
 * timebase ticks.  (Note that the != TB_NIL checks below are
 * purely defensive; they should never fail.)
 */

135
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
136
{
137
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
138
	unsigned long flags;
139

140
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
141 142
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
	    vc->preempt_tb != TB_NIL) {
143
		vc->stolen_tb += mftb() - vc->preempt_tb;
144 145 146 147 148 149 150
		vc->preempt_tb = TB_NIL;
	}
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
151
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
152 153
}

154
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
155
{
156
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
157
	unsigned long flags;
158

159
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
160 161
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
162 163
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
164
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
165 166
}

167
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
168 169
{
	vcpu->arch.shregs.msr = msr;
170
	kvmppc_end_cede(vcpu);
171 172
}

173
void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
174 175 176 177
{
	vcpu->arch.pvr = pvr;
}

178 179 180 181 182 183 184 185 186 187 188
int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		if (!cpu_has_feature(CPU_FTR_ARCH_206))
			return -EINVAL;	/* 970 has no compat mode support */

		switch (arch_compat) {
		case PVR_ARCH_205:
189 190 191 192 193
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
194 195 196
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
197 198 199
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
200 201 202 203
			break;
		default:
			return -EINVAL;
		}
204 205 206 207 208 209 210

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
211 212 213 214 215 216 217 218 219 220
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
250
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
251 252 253
	       vcpu->arch.last_inst);
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
272
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
273 274 275
	vpa->yield_count = 1;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

308 309 310 311 312
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
313
	unsigned long len, nb;
314 315
	void *va;
	struct kvm_vcpu *tvcpu;
316 317 318
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
319 320 321 322 323

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

324 325 326 327 328
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
329
			return H_PARAMETER;
330 331

		/* convert logical addr to kernel addr and read length */
332 333
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
334
			return H_PARAMETER;
335 336
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
337
		else
338
			len = ((struct reg_vpa *)va)->length.word;
339
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
356
			break;
357 358 359 360 361 362
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
363
			break;
364 365 366 367 368
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
369
			break;
370 371 372 373 374 375 376 377 378

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
379
			break;
380 381 382 383 384 385 386 387 388 389

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
390
			break;
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
411
	}
412

413 414
	spin_unlock(&tvcpu->arch.vpa_update_lock);

415
	return err;
416 417
}

418
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
419
{
420
	struct kvm *kvm = vcpu->kvm;
421 422
	void *va;
	unsigned long nb;
423
	unsigned long gpa;
424

425 426 427 428 429 430 431 432 433 434 435 436 437 438
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
439
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
440 441 442 443 444
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
445
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
446 447 448 449 450 451 452 453 454
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
455
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
456
		va = NULL;
457 458
	}
	if (vpap->pinned_addr)
459 460 461
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
462
	vpap->pinned_addr = va;
463
	vpap->dirty = false;
464 465 466 467 468 469
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
470 471 472 473 474
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

475 476
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
477
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
478 479
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
480 481
	}
	if (vcpu->arch.dtl.update_pending) {
482
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
483 484 485 486
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
487
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
488 489 490
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;

	/*
	 * If we are the task running the vcore, then since we hold
	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
	 * can't be updated, so we don't need the tbacct_lock.
	 * If the vcore is inactive, it can't become active (since we
	 * hold the vcore lock), so the vcpu load/put functions won't
	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
	 */
	if (vc->vcore_state != VCORE_INACTIVE &&
	    vc->runner->arch.run_task != current) {
509
		spin_lock_irq(&vc->runner->arch.tbacct_lock);
510 511 512
		p = vc->stolen_tb;
		if (vc->preempt_tb != TB_NIL)
			p += now - vc->preempt_tb;
513
		spin_unlock_irq(&vc->runner->arch.tbacct_lock);
514 515 516 517 518 519
	} else {
		p = vc->stolen_tb;
	}
	return p;
}

520 521 522 523 524
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
525 526 527
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
528 529 530

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
531 532 533 534
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
535
	spin_lock_irq(&vcpu->arch.tbacct_lock);
536 537
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
538
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
539 540 541 542 543
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
544
	dt->timebase = now + vc->tb_offset;
545
	dt->enqueue_to_dispatch_time = stolen;
546 547 548 549 550 551 552 553 554
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
555
	vcpu->arch.dtl.dirty = true;
556 557
}

558 559 560 561 562
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
563
	int idx, rc;
564 565

	switch (req) {
566
	case H_ENTER:
567
		idx = srcu_read_lock(&vcpu->kvm->srcu);
568 569 570 571
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
572
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
573
		break;
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
593 594 595 596 597 598 599 600 601
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		kvm_vcpu_yield_to(tvcpu);
602 603 604 605 606 607
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
608 609 610 611
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

612
		idx = srcu_read_lock(&vcpu->kvm->srcu);
613
		rc = kvmppc_rtas_hcall(vcpu);
614
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
615 616 617 618 619 620 621 622

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
623 624 625 626 627

	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
628 629
	case H_IPOLL:
	case H_XIRR_X:
630 631 632 633
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
		} /* fallthrough */
634 635 636 637 638 639 640 641
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

642 643
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
644 645 646 647 648 649 650 651 652 653 654 655 656 657
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
658
	case BOOK3S_INTERRUPT_H_DOORBELL:
659 660 661 662 663 664
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
665 666 667 668 669 670 671 672 673 674 675
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

695 696 697 698
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

699 700 701 702 703 704 705 706 707
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
708 709 710 711 712
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
713 714
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
715
		r = RESUME_PAGE_FAULT;
716 717
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
718 719 720
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
721 722 723 724 725 726 727
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
728 729 730 731 732 733 734 735 736 737
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		r = RESUME_GUEST;
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
738 739 740 741 742 743 744
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
745
		run->hw.hardware_exit_reason = vcpu->arch.trap;
746 747 748 749 750 751 752
		r = RESUME_HOST;
		break;
	}

	return r;
}

753 754
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
755 756 757 758
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
759
	sregs->pvr = vcpu->arch.pvr;
760 761 762 763 764 765 766 767
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

768 769
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
770 771 772
{
	int i, j;

773
	kvmppc_set_pvr_hv(vcpu, sregs->pvr);
774 775 776 777 778 779 780 781 782 783 784 785 786 787

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

788 789 790 791 792 793
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

	spin_lock(&vc->lock);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm *kvm = vcpu->kvm;
		struct kvm_vcpu *vcpu;
		int i;

		mutex_lock(&kvm->lock);
		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
		mutex_unlock(&kvm->lock);
	}

815 816 817
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
818
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
819 820
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
821 822
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
823 824 825 826
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
}

827 828
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
829
{
830 831
	int r = 0;
	long int i;
832

833
	switch (id) {
834
	case KVM_REG_PPC_HIOR:
835 836 837 838 839
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
840 841 842
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
858
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
859 860 861 862 863 864
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
865
		break;
866 867 868 869
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
870 871 872 873 874 875
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
876 877
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
878
		break;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_IC:
		*val = get_reg_val(id, vcpu->arch.ic);
		break;
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vtb);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
920
		break;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
938 939 940
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
941 942 943
	case KVM_REG_PPC_LPCR:
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
944 945 946
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1010 1011 1012
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1013
	default:
1014
		r = -EINVAL;
1015 1016 1017 1018 1019 1020
		break;
	}

	return r;
}

1021 1022
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1023
{
1024 1025
	int r = 0;
	long int i;
1026
	unsigned long addr, len;
1027

1028
	switch (id) {
1029 1030
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1031
		if (set_reg_val(id, *val))
1032 1033
			r = -EINVAL;
		break;
1034 1035 1036
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1037 1038 1039
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1055
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1056 1057 1058 1059 1060 1061 1062
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1063 1064 1065 1066
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1067 1068 1069 1070 1071 1072
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1073 1074
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1075
		break;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_IC:
		vcpu->arch.ic = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_VTB:
		vcpu->arch.vtb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1120
		break;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1141 1142
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1143 1144 1145 1146
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1147 1148 1149 1150 1151
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1152 1153 1154
	case KVM_REG_PPC_LPCR:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
		break;
1155 1156 1157
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1220 1221 1222
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1223
	default:
1224
		r = -EINVAL;
1225 1226 1227 1228 1229 1230
		break;
	}

	return r;
}

1231 1232
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1233 1234
{
	struct kvm_vcpu *vcpu;
1235 1236 1237
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1238

1239 1240 1241 1242 1243
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1244
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1245 1246 1247 1248 1249 1250 1251 1252
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1264 1265 1266
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1267
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1268
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1269 1270
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1271
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1272 1273 1274

	kvmppc_mmu_book3s_hv_init(vcpu);

1275
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
1286
			init_waitqueue_head(&vcore->wq);
1287
			vcore->preempt_tb = TB_NIL;
1288
			vcore->lpcr = kvm->arch.lpcr;
1289 1290
			vcore->first_vcpuid = core * threads_per_core;
			vcore->kvm = kvm;
1291 1292
		}
		kvm->arch.vcores[core] = vcore;
1293
		kvm->arch.online_vcores++;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1304
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1305

1306 1307 1308
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1309 1310 1311
	return vcpu;

free_vcpu:
1312
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1313 1314 1315 1316
out:
	return ERR_PTR(err);
}

1317 1318 1319 1320 1321 1322 1323
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1324
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1325
{
1326
	spin_lock(&vcpu->arch.vpa_update_lock);
1327 1328 1329
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1330
	spin_unlock(&vcpu->arch.vpa_update_lock);
1331
	kvm_vcpu_uninit(vcpu);
1332
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1333 1334
}

1335 1336 1337 1338 1339 1340
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1341
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1342
{
1343
	unsigned long dec_nsec, now;
1344

1345 1346 1347 1348
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1349
		kvmppc_core_prepare_to_enter(vcpu);
1350
		return;
1351
	}
1352 1353 1354 1355 1356
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1357 1358
}

1359
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1360
{
1361 1362 1363 1364 1365
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1366 1367
}

1368
extern void __kvmppc_vcore_entry(void);
1369

1370 1371
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1372
{
1373 1374
	u64 now;

1375 1376
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1377
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1378 1379 1380 1381 1382
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1383
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1384 1385 1386 1387
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1388 1389 1390 1391 1392 1393 1394 1395 1396
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
1397
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1428 1429 1430 1431 1432 1433
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1434 1435 1436 1437
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1438 1439 1440 1441
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
1442
	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1443
	vcpu->cpu = vc->pcpu;
1444
	smp_wmb();
1445
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1446
	if (cpu != smp_processor_id()) {
1447
		xics_wake_cpu(cpu);
1448 1449
		if (vcpu->arch.ptid)
			++vc->n_woken;
1450
	}
1451 1452
#endif
}
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
1473 1474
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

	/* Grab all hw threads so they can't go into the kernel */
	for (thr = 1; thr < threads_per_core; ++thr) {
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1497 1498 1499 1500 1501 1502 1503
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1504
static void kvmppc_run_core(struct kvmppc_vcore *vc)
1505
{
1506
	struct kvm_vcpu *vcpu, *vnext;
1507 1508
	long ret;
	u64 now;
1509
	int i, need_vpa_update;
1510
	int srcu_idx;
1511
	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1512 1513

	/* don't start if any threads have a signal pending */
1514 1515
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1516
		if (signal_pending(vcpu->arch.run_task))
1517 1518 1519 1520 1521
			return;
		if (vcpu->arch.vpa.update_pending ||
		    vcpu->arch.slb_shadow.update_pending ||
		    vcpu->arch.dtl.update_pending)
			vcpus_to_update[need_vpa_update++] = vcpu;
1522 1523 1524 1525 1526 1527 1528 1529 1530
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
1531
	vc->vcore_state = VCORE_STARTING;
1532 1533 1534 1535 1536 1537 1538 1539 1540
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
1541 1542
		for (i = 0; i < need_vpa_update; ++i)
			kvmppc_update_vpas(vcpus_to_update[i]);
1543 1544
		spin_lock(&vc->lock);
	}
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 */
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1556
	vc->pcpu = smp_processor_id();
1557
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1558
		kvmppc_start_thread(vcpu);
1559
		kvmppc_create_dtl_entry(vcpu, vc);
1560
	}
1561

1562 1563 1564 1565
	/* Set this explicitly in case thread 0 doesn't have a vcpu */
	get_paca()->kvm_hstate.kvm_vcore = vc;
	get_paca()->kvm_hstate.ptid = 0;

1566
	vc->vcore_state = VCORE_RUNNING;
1567
	preempt_disable();
1568
	spin_unlock(&vc->lock);
1569

1570
	kvm_guest_enter();
1571

1572
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1573

1574
	__kvmppc_vcore_entry();
1575

1576
	spin_lock(&vc->lock);
1577 1578 1579 1580
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1581 1582
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
1583 1584
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
1585
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1586
	vc->vcore_state = VCORE_EXITING;
1587 1588
	spin_unlock(&vc->lock);

1589
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1590

1591 1592
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1593 1594 1595
	kvm_guest_exit();

	preempt_enable();
1596
	cond_resched();
1597

1598
	spin_lock(&vc->lock);
1599
	now = get_tb();
1600 1601 1602 1603 1604
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1605 1606 1607

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
1608 1609
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);
1610

1611 1612
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1613 1614

		if (vcpu->arch.ceded) {
1615
			if (!is_kvmppc_resume_guest(ret))
1616 1617 1618 1619
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1620
	}
1621 1622

 out:
1623
	vc->vcore_state = VCORE_INACTIVE;
1624 1625
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
1626
		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1627 1628 1629 1630 1631 1632
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1633 1634 1635 1636 1637
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1638 1639 1640
{
	DEFINE_WAIT(wait);

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
1658
	schedule();
1659 1660 1661 1662
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1663

1664 1665 1666 1667 1668
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1669

1670 1671 1672
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
1673
	kvmppc_update_vpas(vcpu);
1674 1675 1676 1677 1678 1679

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1680
	vcpu->arch.ceded = 0;
1681 1682
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1683
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1684
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1685
	vcpu->arch.busy_preempt = TB_NIL;
1686 1687 1688
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1689 1690 1691 1692 1693
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
1694
	if (!signal_pending(current)) {
1695 1696
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
1697
			kvmppc_create_dtl_entry(vcpu, vc);
1698
			kvmppc_start_thread(vcpu);
1699 1700
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
1701 1702
		}

1703
	}
1704

1705 1706
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
1707
		if (vc->vcore_state != VCORE_INACTIVE) {
1708 1709 1710 1711 1712 1713 1714
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1715
			kvmppc_core_prepare_to_enter(v);
1716 1717 1718 1719 1720 1721 1722 1723
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1724 1725 1726 1727
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		vc->runner = vcpu;
		n_ceded = 0;
1728
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1729 1730
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
1731 1732 1733
			else
				v->arch.ceded = 0;
		}
1734 1735 1736 1737
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);
1738
		vc->runner = NULL;
1739
	}
1740

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
1761 1762 1763 1764
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1765 1766
}

1767
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1768 1769
{
	int r;
1770
	int srcu_idx;
1771

1772 1773 1774 1775 1776
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1777 1778
	kvmppc_core_prepare_to_enter(vcpu);

1779 1780 1781 1782 1783 1784
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1785 1786 1787 1788 1789
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1790
	if (!vcpu->kvm->arch.rma_setup_done) {
1791
		r = kvmppc_hv_setup_htab_rma(vcpu);
1792
		if (r)
1793
			goto out;
1794
	}
1795 1796 1797 1798 1799

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1800
	vcpu->arch.pgdir = current->mm->pgd;
1801
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1802

1803 1804 1805 1806 1807 1808
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1809
			kvmppc_core_prepare_to_enter(vcpu);
1810 1811 1812 1813 1814
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1815
		}
1816
	} while (is_kvmppc_resume_guest(r));
1817 1818

 out:
1819
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1820
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1821 1822 1823
	return r;
}

1824

1825
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1826
   Assumes POWER7 or PPC970. */
1827 1828 1829 1830
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1831 1832 1833
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page;
1854
	struct kvm_rma_info *ri = vma->vm_file->private_data;
1855

1856
	if (vmf->pgoff >= kvm_rma_pages)
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
1871
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1872 1873 1874 1875 1876 1877
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1878
	struct kvm_rma_info *ri = filp->private_data;
1879 1880 1881 1882 1883

	kvm_release_rma(ri);
	return 0;
}

1884
static const struct file_operations kvm_rma_fops = {
1885 1886 1887 1888
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

1889 1890
static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
				      struct kvm_allocate_rma *ret)
1891 1892
{
	long fd;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	struct kvm_rma_info *ri;
	/*
	 * Only do this on PPC970 in HV mode
	 */
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_201))
		return -EINVAL;

	if (!kvm_rma_pages)
		return -EINVAL;
1903 1904 1905 1906 1907

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

1908
	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1909 1910 1911
	if (fd < 0)
		kvm_release_rma(ri);

1912
	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1913 1914 1915
	return fd;
}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
1926 1927 1928 1929 1930 1931 1932
	/*
	 * Only return base page encoding. We don't want to return
	 * all the supporting pte_enc, because our H_ENTER doesn't
	 * support MPSS yet. Once they do, we can start passing all
	 * support pte_enc here
	 */
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
1933 1934 1935
	(*sps)++;
}

1936 1937
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1955 1956 1957
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1958 1959
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1960 1961 1962 1963 1964 1965 1966 1967
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
1968
	if (log->slot >= KVM_USER_MEM_SLOTS)
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1979
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1993
static void unpin_slot(struct kvm_memory_slot *memslot)
1994
{
1995 1996 1997
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

2013 2014
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
2015 2016 2017 2018
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
2019
	}
2020 2021 2022 2023 2024 2025 2026
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

2027 2028
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
2029 2030 2031 2032 2033
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
2034

2035 2036
	return 0;
}
2037

2038 2039 2040
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
2041
{
2042
	unsigned long *phys;
2043

2044 2045 2046 2047 2048 2049 2050
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
2051
	}
2052 2053

	return 0;
2054 2055
}

2056 2057 2058
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
2059
{
2060 2061 2062
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

2063
	if (npages && old->npages) {
2064 2065 2066 2067 2068 2069 2070 2071 2072
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
2073 2074
}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

2101 2102 2103 2104 2105
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

2106
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2107 2108 2109
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
2110
	struct kvm_rma_info *ri = NULL;
2111 2112 2113
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
2114 2115
	unsigned long lpcr = 0, senc;
	unsigned long lpcr_mask = 0;
2116 2117 2118 2119
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
2120
	unsigned long i, npages;
2121
	int srcu_idx;
2122 2123 2124 2125

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

2136
	/* Look up the memslot for guest physical address 0 */
2137
	srcu_idx = srcu_read_lock(&kvm->srcu);
2138
	memslot = gfn_to_memslot(kvm, 0);
2139

2140 2141 2142
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2143
		goto out_srcu;
2144 2145 2146 2147 2148 2149 2150 2151 2152

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
2153
	porder = __ilog2(psize);
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
2167
			goto out_srcu;
2168 2169
		}

2170 2171 2172 2173
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
2174
			goto out_srcu;
2175

2176
		/* Update VRMASD field in the LPCR */
2177
		senc = slb_pgsize_encoding(psize);
2178 2179
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2180 2181 2182
		lpcr_mask = LPCR_VRMASD;
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
2183 2184

		/* Create HPTEs in the hash page table for the VRMA */
2185
		kvmppc_map_vrma(vcpu, memslot, porder);
2186 2187 2188

	} else {
		/* Set up to use an RMO region */
2189
		rma_size = kvm_rma_pages;
2190 2191 2192
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
2193
		rmls = lpcr_rmls(rma_size);
2194
		err = -EINVAL;
2195
		if ((long)rmls < 0) {
2196
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2197
			goto out_srcu;
2198 2199 2200
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
2201 2202 2203 2204

		/* Update LPCR and RMOR */
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
2205 2206 2207
			lpcr_mask = (1ul << HID4_RMLS0_SH) |
				(3ul << HID4_RMLS2_SH) | HID4_RMOR;
			lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2208 2209 2210 2211 2212 2213
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
2214 2215
			lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
			lpcr = rmls << LPCR_RMLS_SH;
2216
			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2217
		}
2218
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2219 2220
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

2221
		/* Initialize phys addrs of pages in RMO */
2222
		npages = kvm_rma_pages;
2223
		porder = __ilog2(npages);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
2234 2235
	}

2236 2237
	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);

2238 2239 2240 2241
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
2242 2243
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
2244 2245 2246
 out:
	mutex_unlock(&kvm->lock);
	return err;
2247

2248 2249
 up_out:
	up_read(&current->mm->mmap_sem);
2250
	goto out_srcu;
2251 2252
}

2253
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2254
{
2255
	unsigned long lpcr, lpid;
2256

2257 2258 2259
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
2260
	if ((long)lpid < 0)
2261 2262
		return -ENOMEM;
	kvm->arch.lpid = lpid;
2263

2264 2265 2266 2267 2268 2269 2270
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

2271 2272
	kvm->arch.rma = NULL;

2273
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2274

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2288 2289 2290
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2291 2292 2293
		/* On POWER8 turn on online bit to enable PURR/SPURR */
		if (cpu_has_feature(CPU_FTR_ARCH_207S))
			lpcr |= LPCR_ONL;
2294 2295
	}
	kvm->arch.lpcr = lpcr;
2296

2297
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2298
	spin_lock_init(&kvm->arch.slot_phys_lock);
2299 2300 2301 2302 2303 2304 2305

	/*
	 * Don't allow secondary CPU threads to come online
	 * while any KVM VMs exist.
	 */
	inhibit_secondary_onlining();

2306
	return 0;
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316 2317
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

	for (i = 0; i < KVM_MAX_VCORES; ++i)
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

2318
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2319
{
2320 2321
	uninhibit_secondary_onlining();

2322
	kvmppc_free_vcores(kvm);
2323 2324 2325 2326 2327
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

2328 2329 2330
	kvmppc_free_hpt(kvm);
}

2331 2332 2333
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
2334
{
2335
	return EMULATE_FAIL;
2336 2337
}

2338 2339
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
2340 2341 2342 2343
{
	return EMULATE_FAIL;
}

2344 2345
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
2346 2347 2348 2349
{
	return EMULATE_FAIL;
}

2350
static int kvmppc_core_check_processor_compat_hv(void)
2351
{
2352 2353 2354
	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return -EIO;
	return 0;
2355 2356
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_ALLOCATE_RMA: {
		struct kvm_allocate_rma rma;
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
		if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
			r = -EFAULT;
		break;
	}

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

2409
static struct kvmppc_ops kvm_ops_hv = {
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
};

static int kvmppc_book3s_init_hv(void)
2444 2445
{
	int r;
2446 2447 2448 2449 2450
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
2451
		return -ENODEV;
2452

2453 2454
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
2455

2456
	r = kvmppc_mmu_hv_init();
2457 2458 2459
	return r;
}

2460
static void kvmppc_book3s_exit_hv(void)
2461
{
2462
	kvmppc_hv_ops = NULL;
2463 2464
}

2465 2466
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
2467
MODULE_LICENSE("GPL");
2468 2469
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");