book3s_hv.c 35.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33 34 35 36 37 38 39 40 41 42 43 44

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
45
#include <asm/cputhreads.h>
46
#include <asm/page.h>
47
#include <asm/hvcall.h>
48
#include <asm/switch_to.h>
49 50 51
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
52
#include <linux/hugetlb.h>
53 54 55 56 57

/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

58
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59
static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
60

61 62 63
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	local_paca->kvm_hstate.kvm_vcpu = vcpu;
64
	local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
65 66 67 68 69 70 71 72 73
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
74
	kvmppc_end_cede(vcpu);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
111
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
112 113 114
	       vcpu->arch.last_inst);
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
142
	unsigned long len, nb;
143 144
	void *va;
	struct kvm_vcpu *tvcpu;
145
	int err = H_PARAMETER;
146 147 148 149 150 151 152 153 154 155 156 157

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

	flags >>= 63 - 18;
	flags &= 7;
	if (flags == 0 || flags == 4)
		return H_PARAMETER;
	if (flags < 4) {
		if (vpa & 0x7f)
			return H_PARAMETER;
158 159
		if (flags >= 2 && !tvcpu->arch.vpa)
			return H_RESOURCE;
160
		/* registering new area; convert logical addr to real */
161 162
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
163
			return H_PARAMETER;
164 165 166 167
		if (flags <= 1)
			len = *(unsigned short *)(va + 4);
		else
			len = *(unsigned int *)(va + 4);
168 169
		if (len > nb)
			goto out_unpin;
170 171 172
		switch (flags) {
		case 1:		/* register VPA */
			if (len < 640)
173 174 175
				goto out_unpin;
			if (tvcpu->arch.vpa)
				kvmppc_unpin_guest_page(kvm, vcpu->arch.vpa);
176 177 178 179 180
			tvcpu->arch.vpa = va;
			init_vpa(vcpu, va);
			break;
		case 2:		/* register DTL */
			if (len < 48)
181
				goto out_unpin;
182
			len -= len % 48;
183 184
			if (tvcpu->arch.dtl)
				kvmppc_unpin_guest_page(kvm, vcpu->arch.dtl);
185 186 187 188
			tvcpu->arch.dtl = va;
			tvcpu->arch.dtl_end = va + len;
			break;
		case 3:		/* register SLB shadow buffer */
189 190 191 192
			if (len < 16)
				goto out_unpin;
			if (tvcpu->arch.slb_shadow)
				kvmppc_unpin_guest_page(kvm, vcpu->arch.slb_shadow);
193 194 195 196 197 198 199 200
			tvcpu->arch.slb_shadow = va;
			break;
		}
	} else {
		switch (flags) {
		case 5:		/* unregister VPA */
			if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
				return H_RESOURCE;
201 202 203
			if (!tvcpu->arch.vpa)
				break;
			kvmppc_unpin_guest_page(kvm, tvcpu->arch.vpa);
204 205 206
			tvcpu->arch.vpa = NULL;
			break;
		case 6:		/* unregister DTL */
207 208 209
			if (!tvcpu->arch.dtl)
				break;
			kvmppc_unpin_guest_page(kvm, tvcpu->arch.dtl);
210 211 212
			tvcpu->arch.dtl = NULL;
			break;
		case 7:		/* unregister SLB shadow buffer */
213 214 215
			if (!tvcpu->arch.slb_shadow)
				break;
			kvmppc_unpin_guest_page(kvm, tvcpu->arch.slb_shadow);
216 217 218 219 220
			tvcpu->arch.slb_shadow = NULL;
			break;
		}
	}
	return H_SUCCESS;
221 222 223 224

 out_unpin:
	kvmppc_unpin_guest_page(kvm, va);
	return err;
225 226 227 228 229 230 231 232 233
}

int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;

	switch (req) {
234 235 236 237 238 239
	case H_ENTER:
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
		break;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
329 330 331 332 333
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
334 335
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
336 337
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
338 339
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
340 341
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				kvmppc_get_pc(vcpu), 0);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
	case KVM_REG_PPC_HIOR:
		r = put_user(0, (u64 __user *)reg->addr);
		break;
	default:
		break;
	}

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
	case KVM_REG_PPC_HIOR:
	{
		u64 hior;
		/* Only allow this to be set to zero */
		r = get_user(hior, (u64 __user *)reg->addr);
		if (!r && (hior != 0))
			r = -EINVAL;
		break;
	}
	default:
		break;
	}

	return r;
}

437 438
int kvmppc_core_check_processor_compat(void)
{
439
	if (cpu_has_feature(CPU_FTR_HVMODE))
440 441 442 443 444 445 446
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
447 448 449
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
450

451 452 453 454 455
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
456
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);

	kvmppc_mmu_book3s_hv_init(vcpu);

474
	/*
475
	 * We consider the vcpu stopped until we see the first run ioctl for it.
476
	 */
477
	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
478 479 480 481 482 483 484 485 486 487

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
488
			init_waitqueue_head(&vcore->wq);
489 490 491 492 493 494 495 496 497 498 499 500 501
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;

502 503 504
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

505 506 507
	return vcpu;

free_vcpu:
508
	kmem_cache_free(kvm_vcpu_cache, vcpu);
509 510 511 512 513 514
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
515 516 517 518 519 520
	if (vcpu->arch.dtl)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl);
	if (vcpu->arch.slb_shadow)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow);
	if (vcpu->arch.vpa)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa);
521
	kvm_vcpu_uninit(vcpu);
522
	kmem_cache_free(kvm_vcpu_cache, vcpu);
523 524
}

525
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
526
{
527
	unsigned long dec_nsec, now;
528

529 530 531 532
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
533
		kvmppc_core_prepare_to_enter(vcpu);
534
		return;
535
	}
536 537 538 539 540
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
541 542
}

543
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
544
{
545 546 547 548 549
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
550 551
}

552
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
553
extern void xics_wake_cpu(int cpu);
554

555 556
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
557
{
558
	struct kvm_vcpu *v;
559

560 561 562 563
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	--vc->n_runnable;
564
	++vc->n_busy;
565 566 567 568 569 570 571
	/* decrement the physical thread id of each following vcpu */
	v = vcpu;
	list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
		--v->arch.ptid;
	list_del(&vcpu->arch.run_list);
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

611 612 613 614 615 616
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

617 618 619 620
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
621 622 623 624
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
625 626
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
627
	smp_wmb();
628
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
629
	if (vcpu->arch.ptid) {
630
		kvmppc_grab_hwthread(cpu);
631 632
		xics_wake_cpu(cpu);
		++vc->n_woken;
633
	}
634 635
#endif
}
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
 * this core are off-line.
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
static int kvmppc_run_core(struct kvmppc_vcore *vc)
{
677
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
678 679
	long ret;
	u64 now;
680
	int ptid, i;
681 682 683 684 685

	/* don't start if any threads have a signal pending */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (signal_pending(vcpu->arch.run_task))
			return 0;
686 687 688 689 690 691 692

	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 * XXX we should also block attempts to bring any
	 * secondary threads online.
	 */
693 694 695 696
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
697 698
	}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
	if (!vcpu0)
		return 0;		/* nothing to run */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

718 719 720
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
721
	vc->vcore_state = VCORE_RUNNING;
722 723
	vc->in_guest = 0;
	vc->pcpu = smp_processor_id();
724
	vc->napping_threads = 0;
725 726
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		kvmppc_start_thread(vcpu);
727 728 729
	/* Grab any remaining hw threads so they can't go into the kernel */
	for (i = ptid; i < threads_per_core; ++i)
		kvmppc_grab_hwthread(vc->pcpu + i);
730

731
	preempt_disable();
732
	spin_unlock(&vc->lock);
733

734
	kvm_guest_enter();
735
	__kvmppc_vcore_entry(NULL, vcpu0);
736 737
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
738

739
	spin_lock(&vc->lock);
740 741 742 743
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
744 745 746
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
747
	vc->vcore_state = VCORE_EXITING;
748 749 750 751
	spin_unlock(&vc->lock);

	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
752 753 754 755 756 757
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

	now = get_tb();
758 759 760 761 762
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
763 764 765 766 767 768

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

769 770
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
771 772 773 774 775 776 777

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
778
	}
779

780
	spin_lock(&vc->lock);
781
 out:
782
	vc->vcore_state = VCORE_INACTIVE;
783 784 785 786 787 788 789 790 791 792 793
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}

	return 1;
}

794 795 796 797 798
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
799 800 801
{
	DEFINE_WAIT(wait);

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);
	struct kvm_vcpu *v;
	int all_idle = 1;

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
		if (!v->arch.ceded || v->arch.pending_exceptions) {
			all_idle = 0;
			break;
		}
826
	}
827 828 829 830 831 832
	if (all_idle)
		schedule();
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
833

834 835 836 837 838 839
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	int prev_state;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
840

841 842 843 844 845 846 847 848 849
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
850
	vcpu->arch.ceded = 0;
851 852
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
853 854
	prev_state = vcpu->arch.state;
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
855 856 857
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

858 859 860 861 862 863 864 865 866 867
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
	if (prev_state == KVMPPC_VCPU_STOPPED) {
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
			kvmppc_start_thread(vcpu);
868 869
		}

870 871
	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
		--vc->n_busy;
872

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
			n_ceded += v->arch.ceded;
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);

		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
891
			kvmppc_core_prepare_to_enter(v);
892 893 894 895 896 897 898 899 900
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
	}
901

902 903 904 905 906 907 908 909 910 911 912 913 914
	if (signal_pending(current)) {
		if (vc->vcore_state == VCORE_RUNNING ||
		    vc->vcore_state == VCORE_EXITING) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
			spin_lock(&vc->lock);
		}
		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
			kvmppc_remove_runnable(vc, vcpu);
			vcpu->stat.signal_exits++;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			vcpu->arch.ret = -EINTR;
		}
915 916 917 918
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
919 920
}

921 922 923 924
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;

925 926 927 928 929
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

930 931
	kvmppc_core_prepare_to_enter(vcpu);

932 933 934 935 936 937
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

938 939 940 941 942 943
	/* On the first time here, set up VRMA or RMA */
	if (!vcpu->kvm->arch.rma_setup_done) {
		r = kvmppc_hv_setup_rma(vcpu);
		if (r)
			return r;
	}
944 945 946 947 948

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
949
	vcpu->arch.pgdir = current->mm->pgd;
950

951 952 953 954 955 956
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
957
			kvmppc_core_prepare_to_enter(vcpu);
958 959 960 961 962
		}
	} while (r == RESUME_GUEST);
	return r;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static long kvmppc_stt_npages(unsigned long window_size)
{
	return ALIGN((window_size >> SPAPR_TCE_SHIFT)
		     * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
}

static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
{
	struct kvm *kvm = stt->kvm;
	int i;

	mutex_lock(&kvm->lock);
	list_del(&stt->list);
	for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
		__free_page(stt->pages[i]);
	kfree(stt);
	mutex_unlock(&kvm->lock);

	kvm_put_kvm(kvm);
}

static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
	struct page *page;

	if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
		return VM_FAULT_SIGBUS;

	page = stt->pages[vmf->pgoff];
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
	.fault = kvm_spapr_tce_fault,
};

static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_ops = &kvm_spapr_tce_vm_ops;
	return 0;
}

static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
{
	struct kvmppc_spapr_tce_table *stt = filp->private_data;

	release_spapr_tce_table(stt);
	return 0;
}

static struct file_operations kvm_spapr_tce_fops = {
	.mmap           = kvm_spapr_tce_mmap,
	.release	= kvm_spapr_tce_release,
};

long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
				   struct kvm_create_spapr_tce *args)
{
	struct kvmppc_spapr_tce_table *stt = NULL;
	long npages;
	int ret = -ENOMEM;
	int i;

	/* Check this LIOBN hasn't been previously allocated */
	list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
		if (stt->liobn == args->liobn)
			return -EBUSY;
	}

	npages = kvmppc_stt_npages(args->window_size);

	stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
		      GFP_KERNEL);
	if (!stt)
		goto fail;

	stt->liobn = args->liobn;
	stt->window_size = args->window_size;
	stt->kvm = kvm;

	for (i = 0; i < npages; i++) {
		stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
		if (!stt->pages[i])
			goto fail;
	}

	kvm_get_kvm(kvm);

	mutex_lock(&kvm->lock);
	list_add(&stt->list, &kvm->arch.spapr_tce_tables);

	mutex_unlock(&kvm->lock);

	return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
				stt, O_RDWR);

fail:
	if (stt) {
		for (i = 0; i < npages; i++)
			if (stt->pages[i])
				__free_page(stt->pages[i]);

		kfree(stt);
	}
	return ret;
}

1073
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1074
   Assumes POWER7 or PPC970. */
1075 1076 1077 1078
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1079 1080 1081
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1101
	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1126
	struct kvmppc_linear_info *ri = filp->private_data;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
1139
	struct kvmppc_linear_info *ri;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

	r = kvmppc_hv_get_dirty_log(kvm, memslot);
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

1203 1204 1205
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem)
{
1206
	unsigned long npages;
1207
	unsigned long *phys;
1208

1209 1210
	/* Allocate a slot_phys array */
	phys = kvm->arch.slot_phys[mem->slot];
1211 1212
	if (!kvm->arch.using_mmu_notifiers && !phys) {
		npages = mem->memory_size >> PAGE_SHIFT;
1213 1214 1215 1216 1217 1218
		phys = vzalloc(npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		kvm->arch.slot_phys[mem->slot] = phys;
		kvm->arch.slot_npages[mem->slot] = npages;
	}
1219

1220 1221
	return 0;
}
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static void unpin_slot(struct kvm *kvm, int slot_id)
{
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;

	physp = kvm->arch.slot_phys[slot_id];
	npages = kvm->arch.slot_npages[slot_id];
	if (physp) {
		spin_lock(&kvm->arch.slot_phys_lock);
		for (j = 0; j < npages; j++) {
			if (!(physp[j] & KVMPPC_GOT_PAGE))
				continue;
			pfn = physp[j] >> PAGE_SHIFT;
			page = pfn_to_page(pfn);
1238 1239
			if (PageHuge(page))
				page = compound_head(page);
1240 1241
			SetPageDirty(page);
			put_page(page);
1242
		}
1243 1244 1245
		kvm->arch.slot_phys[slot_id] = NULL;
		spin_unlock(&kvm->arch.slot_phys_lock);
		vfree(physp);
1246
	}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem)
{
}

static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1258
	struct kvmppc_linear_info *ri = NULL;
1259 1260 1261
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1262
	unsigned long lpcr, senc;
1263 1264 1265 1266
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1267
	unsigned long i, npages;
1268 1269 1270 1271

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1272

1273 1274
	/* Look up the memslot for guest physical address 0 */
	memslot = gfn_to_memslot(kvm, 0);
1275

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
		goto out;

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1289
	porder = __ilog2(psize);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
			goto out;
		}

1306 1307 1308 1309 1310 1311
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
			goto out;

1312
		/* Update VRMASD field in the LPCR */
1313
		senc = slb_pgsize_encoding(psize);
1314 1315
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1316 1317
		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1318 1319 1320
		kvm->arch.lpcr = lpcr;

		/* Create HPTEs in the hash page table for the VRMA */
1321
		kvmppc_map_vrma(vcpu, memslot, porder);
1322 1323 1324 1325 1326 1327 1328

	} else {
		/* Set up to use an RMO region */
		rma_size = ri->npages;
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1329
		rmls = lpcr_rmls(rma_size);
1330
		err = -EINVAL;
1331
		if (rmls < 0) {
1332 1333
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
			goto out;
1334 1335 1336
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1355
		kvm->arch.lpcr = lpcr;
1356
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1357 1358
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1359
		/* Initialize phys addrs of pages in RMO */
1360 1361
		npages = ri->npages;
		porder = __ilog2(npages);
1362 1363 1364
		physp = kvm->arch.slot_phys[memslot->id];
		spin_lock(&kvm->arch.slot_phys_lock);
		for (i = 0; i < npages; ++i)
1365
			physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1366
		spin_unlock(&kvm->arch.slot_phys_lock);
1367 1368
	}

1369 1370 1371 1372 1373 1374 1375
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
 out:
	mutex_unlock(&kvm->lock);
	return err;
1376

1377 1378 1379
 up_out:
	up_read(&current->mm->mmap_sem);
	goto out;
1380 1381 1382 1383 1384
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
	long r;
1385
	unsigned long lpcr;
1386 1387 1388

	/* Allocate hashed page table */
	r = kvmppc_alloc_hpt(kvm);
1389 1390
	if (r)
		return r;
1391

1392
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1393 1394 1395

	kvm->arch.rma = NULL;

1396
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		unsigned long lpid = kvm->arch.lpid;
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1412 1413 1414
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1415 1416
	}
	kvm->arch.lpcr = lpcr;
1417

1418
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1419
	spin_lock_init(&kvm->arch.slot_phys_lock);
1420
	return 0;
1421 1422 1423 1424
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1425 1426
	unsigned long i;

1427 1428 1429
	if (!kvm->arch.using_mmu_notifiers)
		for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
			unpin_slot(kvm, i);
1430

1431 1432 1433 1434 1435
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1436
	kvmppc_free_hpt(kvm);
1437
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
{
	return EMULATE_FAIL;
}

int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);