book3s_hv.c 39.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34 35 36 37 38 39 40 41 42 43 44 45

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
46
#include <asm/cputhreads.h>
47
#include <asm/page.h>
48
#include <asm/hvcall.h>
49
#include <asm/switch_to.h>
50 51 52
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
53
#include <linux/hugetlb.h>
54 55 56 57 58

/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

59
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
60
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
61

62 63
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
64 65
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

66
	local_paca->kvm_hstate.kvm_vcpu = vcpu;
67 68 69
	local_paca->kvm_hstate.kvm_vcore = vc;
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->stolen_tb += mftb() - vc->preempt_tb;
70 71 72 73
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
74 75 76 77
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
78 79 80 81 82
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
83
	kvmppc_end_cede(vcpu);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
120
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
121 122 123
	       vcpu->arch.last_inst);
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

162 163 164 165 166
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
167
	unsigned long len, nb;
168 169
	void *va;
	struct kvm_vcpu *tvcpu;
170 171 172
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
173 174 175 176 177

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

178 179 180 181 182
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
183
			return H_PARAMETER;
184 185

		/* convert logical addr to kernel addr and read length */
186 187
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
188
			return H_PARAMETER;
189 190
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
191
		else
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
			len = ((struct reg_vpa *)va)->length.word;
		kvmppc_unpin_guest_page(kvm, va);

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
210
			break;
211 212 213 214 215 216
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
217
			break;
218 219 220 221 222
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
223
			break;
224 225 226 227 228 229 230 231 232

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
233
			break;
234 235 236 237 238 239 240 241 242 243

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
244
			break;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
265
	}
266

267 268
	spin_unlock(&tvcpu->arch.vpa_update_lock);

269
	return err;
270 271
}

272
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
273
{
274
	struct kvm *kvm = vcpu->kvm;
275 276
	void *va;
	unsigned long nb;
277
	unsigned long gpa;
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
			va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
299
			kvmppc_unpin_guest_page(kvm, va);
300 301 302 303 304 305 306 307 308 309 310
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
		kvmppc_unpin_guest_page(kvm, va);
		va = NULL;
311 312 313 314 315 316 317 318 319 320 321 322
	}
	if (vpap->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
	vpap->pinned_addr = va;
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
323
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
324 325 326
		init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
	}
	if (vcpu->arch.dtl.update_pending) {
327
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
328 329 330 331
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
332
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
333 334 335
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
	unsigned long old_stolen;

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
	old_stolen = vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = vc->stolen_tb;
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
	dt->timebase = mftb();
	dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
}

365 366 367 368 369
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
370
	int idx;
371 372

	switch (req) {
373
	case H_ENTER:
374
		idx = srcu_read_lock(&vcpu->kvm->srcu);
375 376 377 378
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
379
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
380
		break;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

414 415 416 417
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;
418
	int srcu_idx;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
471 472 473 474 475
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
476 477
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
478
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
479 480
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
481
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
482 483
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
484
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
485 486
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				kvmppc_get_pc(vcpu), 0);
487
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
	case KVM_REG_PPC_HIOR:
		r = put_user(0, (u64 __user *)reg->addr);
		break;
	default:
		break;
	}

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
	case KVM_REG_PPC_HIOR:
	{
		u64 hior;
		/* Only allow this to be set to zero */
		r = get_user(hior, (u64 __user *)reg->addr);
		if (!r && (hior != 0))
			r = -EINVAL;
		break;
	}
	default:
		break;
	}

	return r;
}

583 584
int kvmppc_core_check_processor_compat(void)
{
585
	if (cpu_has_feature(CPU_FTR_HVMODE))
586 587 588 589 590 591 592
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
593 594 595
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
596

597 598 599 600 601
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
602
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
603 604 605 606 607 608 609 610 611 612 613 614 615 616
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
617
	spin_lock_init(&vcpu->arch.vpa_update_lock);
618 619 620

	kvmppc_mmu_book3s_hv_init(vcpu);

621
	/*
622
	 * We consider the vcpu stopped until we see the first run ioctl for it.
623
	 */
624
	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
625 626 627 628 629 630 631 632 633 634

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
635
			init_waitqueue_head(&vcore->wq);
636
			vcore->preempt_tb = mftb();
637 638 639 640 641 642 643 644 645 646 647 648
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
649
	vcpu->arch.stolen_logged = vcore->stolen_tb;
650

651 652 653
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

654 655 656
	return vcpu;

free_vcpu:
657
	kmem_cache_free(kvm_vcpu_cache, vcpu);
658 659 660 661 662 663
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
664 665 666 667 668 669 670 671
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.dtl.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
	if (vcpu->arch.slb_shadow.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
	if (vcpu->arch.vpa.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
	spin_unlock(&vcpu->arch.vpa_update_lock);
672
	kvm_vcpu_uninit(vcpu);
673
	kmem_cache_free(kvm_vcpu_cache, vcpu);
674 675
}

676
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
677
{
678
	unsigned long dec_nsec, now;
679

680 681 682 683
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
684
		kvmppc_core_prepare_to_enter(vcpu);
685
		return;
686
	}
687 688 689 690 691
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
692 693
}

694
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
695
{
696 697 698 699 700
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
701 702
}

703
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
704
extern void xics_wake_cpu(int cpu);
705

706 707
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
708
{
709 710 711 712
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	--vc->n_runnable;
713
	++vc->n_busy;
714 715 716
	list_del(&vcpu->arch.run_list);
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

756 757 758 759 760 761
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

762 763 764 765
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
766 767 768 769
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
770 771
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
772
	smp_wmb();
773
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
774
	if (vcpu->arch.ptid) {
775
		kvmppc_grab_hwthread(cpu);
776 777
		xics_wake_cpu(cpu);
		++vc->n_woken;
778
	}
779 780
#endif
}
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
 * this core are off-line.
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
static int kvmppc_run_core(struct kvmppc_vcore *vc)
{
822
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
823 824
	long ret;
	u64 now;
825
	int ptid, i, need_vpa_update;
826
	int srcu_idx;
827 828

	/* don't start if any threads have a signal pending */
829 830
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
831 832
		if (signal_pending(vcpu->arch.run_task))
			return 0;
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		need_vpa_update |= vcpu->arch.vpa.update_pending |
			vcpu->arch.slb_shadow.update_pending |
			vcpu->arch.dtl.update_pending;
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
	vc->vcore_state = VCORE_RUNNING;
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			kvmppc_update_vpas(vcpu);
		spin_lock(&vc->lock);
	}
859 860 861 862 863 864 865

	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 * XXX we should also block attempts to bring any
	 * secondary threads online.
	 */
866 867 868 869
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
870 871
	}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
	if (!vcpu0)
		return 0;		/* nothing to run */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

891
	vc->stolen_tb += mftb() - vc->preempt_tb;
892
	vc->pcpu = smp_processor_id();
893
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
894
		kvmppc_start_thread(vcpu);
895
		kvmppc_create_dtl_entry(vcpu, vc);
896
	}
897 898 899
	/* Grab any remaining hw threads so they can't go into the kernel */
	for (i = ptid; i < threads_per_core; ++i)
		kvmppc_grab_hwthread(vc->pcpu + i);
900

901
	preempt_disable();
902
	spin_unlock(&vc->lock);
903

904
	kvm_guest_enter();
905 906 907

	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);

908
	__kvmppc_vcore_entry(NULL, vcpu0);
909 910
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
911

912
	spin_lock(&vc->lock);
913 914 915 916
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
917 918 919
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
920
	vc->vcore_state = VCORE_EXITING;
921 922
	spin_unlock(&vc->lock);

923 924
	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);

925 926
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
927 928 929 930 931 932
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

	now = get_tb();
933 934 935 936 937
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
938 939 940 941 942 943

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

944 945
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
946 947 948 949 950 951 952

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
953
	}
954

955
	spin_lock(&vc->lock);
956
 out:
957
	vc->vcore_state = VCORE_INACTIVE;
958
	vc->preempt_tb = mftb();
959 960 961 962 963 964 965 966 967 968 969
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}

	return 1;
}

970 971 972 973 974
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
975 976 977
{
	DEFINE_WAIT(wait);

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);
	struct kvm_vcpu *v;
	int all_idle = 1;

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
		if (!v->arch.ceded || v->arch.pending_exceptions) {
			all_idle = 0;
			break;
		}
1002
	}
1003 1004 1005 1006 1007 1008
	if (all_idle)
		schedule();
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1009

1010 1011 1012 1013 1014 1015
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	int prev_state;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1026
	vcpu->arch.ceded = 0;
1027 1028
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1029 1030
	prev_state = vcpu->arch.state;
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1031 1032 1033
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
	if (prev_state == KVMPPC_VCPU_STOPPED) {
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
			kvmppc_start_thread(vcpu);
1044 1045
		}

1046 1047
	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
		--vc->n_busy;
1048

1049 1050 1051 1052 1053 1054 1055 1056
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
1057
		vc->runner = vcpu;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
			n_ceded += v->arch.ceded;
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);

		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1068
			kvmppc_core_prepare_to_enter(v);
1069 1070 1071 1072 1073 1074 1075 1076
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1077
		vc->runner = NULL;
1078
	}
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	if (signal_pending(current)) {
		if (vc->vcore_state == VCORE_RUNNING ||
		    vc->vcore_state == VCORE_EXITING) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
			spin_lock(&vc->lock);
		}
		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
			kvmppc_remove_runnable(vc, vcpu);
			vcpu->stat.signal_exits++;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			vcpu->arch.ret = -EINTR;
		}
1093 1094 1095 1096
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1097 1098
}

1099 1100 1101 1102
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;

1103 1104 1105 1106 1107
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1108 1109
	kvmppc_core_prepare_to_enter(vcpu);

1110 1111 1112 1113 1114 1115
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1116 1117 1118 1119 1120
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1121
	if (!vcpu->kvm->arch.rma_setup_done) {
1122
		r = kvmppc_hv_setup_htab_rma(vcpu);
1123
		if (r)
1124
			goto out;
1125
	}
1126 1127 1128 1129 1130

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1131
	vcpu->arch.pgdir = current->mm->pgd;
1132

1133 1134 1135 1136 1137 1138
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1139
			kvmppc_core_prepare_to_enter(vcpu);
1140 1141
		}
	} while (r == RESUME_GUEST);
1142 1143 1144

 out:
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1145 1146 1147
	return r;
}

1148

1149
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1150
   Assumes POWER7 or PPC970. */
1151 1152 1153 1154
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1155 1156 1157
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1177
	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1202
	struct kvmppc_linear_info *ri = filp->private_data;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
1215
	struct kvmppc_linear_info *ri;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
	(*sps)->enc[0].pte_enc = def->penc;
	(*sps)++;
}

int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1285
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

1311
static void unpin_slot(struct kvm_memory_slot *memslot)
1312
{
1313 1314 1315
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
			      struct kvm_memory_slot *dont)
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
1337
	}
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
			       unsigned long npages)
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
1352

1353 1354
	return 0;
}
1355

1356 1357 1358
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				      struct kvm_memory_slot *memslot,
				      struct kvm_userspace_memory_region *mem)
1359
{
1360
	unsigned long *phys;
1361

1362 1363 1364 1365 1366 1367 1368
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
1369
	}
1370 1371

	return 0;
1372 1373 1374
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
1375 1376
				      struct kvm_userspace_memory_region *mem,
				      struct kvm_memory_slot old)
1377
{
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

	if (npages && old.npages) {
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
1391 1392
}

1393
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1394 1395 1396
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1397
	struct kvmppc_linear_info *ri = NULL;
1398 1399 1400
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1401
	unsigned long lpcr, senc;
1402 1403 1404 1405
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1406
	unsigned long i, npages;
1407
	int srcu_idx;
1408 1409 1410 1411

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

1422
	/* Look up the memslot for guest physical address 0 */
1423
	srcu_idx = srcu_read_lock(&kvm->srcu);
1424
	memslot = gfn_to_memslot(kvm, 0);
1425

1426 1427 1428
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1429
		goto out_srcu;
1430 1431 1432 1433 1434 1435 1436 1437 1438

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1439
	porder = __ilog2(psize);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
1453
			goto out_srcu;
1454 1455
		}

1456 1457 1458 1459
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
1460
			goto out_srcu;
1461

1462
		/* Update VRMASD field in the LPCR */
1463
		senc = slb_pgsize_encoding(psize);
1464 1465
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1466 1467
		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1468 1469 1470
		kvm->arch.lpcr = lpcr;

		/* Create HPTEs in the hash page table for the VRMA */
1471
		kvmppc_map_vrma(vcpu, memslot, porder);
1472 1473 1474 1475 1476 1477 1478

	} else {
		/* Set up to use an RMO region */
		rma_size = ri->npages;
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1479
		rmls = lpcr_rmls(rma_size);
1480
		err = -EINVAL;
1481
		if (rmls < 0) {
1482
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1483
			goto out_srcu;
1484 1485 1486
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1505
		kvm->arch.lpcr = lpcr;
1506
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1507 1508
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1509
		/* Initialize phys addrs of pages in RMO */
1510 1511
		npages = ri->npages;
		porder = __ilog2(npages);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
1522 1523
	}

1524 1525 1526 1527
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
1528 1529
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1530 1531 1532
 out:
	mutex_unlock(&kvm->lock);
	return err;
1533

1534 1535 1536
 up_out:
	up_read(&current->mm->mmap_sem);
	goto out;
1537 1538 1539 1540
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
1541
	unsigned long lpcr, lpid;
1542

1543 1544 1545 1546 1547 1548
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
	if (lpid < 0)
		return -ENOMEM;
	kvm->arch.lpid = lpid;
1549

1550
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1551 1552 1553

	kvm->arch.rma = NULL;

1554
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1569 1570 1571
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1572 1573
	}
	kvm->arch.lpcr = lpcr;
1574

1575
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1576
	spin_lock_init(&kvm->arch.slot_phys_lock);
1577
	return 0;
1578 1579 1580 1581
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1582 1583 1584 1585 1586
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1587
	kvmppc_free_hpt(kvm);
1588
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

1603
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1604 1605 1606 1607
{
	return EMULATE_FAIL;
}

1608
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);