book3s_hv.c 59.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35 36 37 38 39 40 41 42 43 44 45 46

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
47
#include <asm/cputhreads.h>
48
#include <asm/page.h>
49
#include <asm/hvcall.h>
50
#include <asm/switch_to.h>
51
#include <asm/smp.h>
52 53 54
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
55
#include <linux/hugetlb.h>
56
#include <linux/module.h>
57

58 59
#include "book3s.h"

60 61 62 63
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

64 65 66
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

67 68 69
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

70
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
71
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
72

73
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
{
	int me;
	int cpu = vcpu->cpu;
	wait_queue_head_t *wqp;

	wqp = kvm_arch_vcpu_wq(vcpu);
	if (waitqueue_active(wqp)) {
		wake_up_interruptible(wqp);
		++vcpu->stat.halt_wakeup;
	}

	me = get_cpu();

	/* CPU points to the first thread of the core */
	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
89
#ifdef CONFIG_KVM_XICS
90 91 92
		int real_cpu = cpu + vcpu->arch.ptid;
		if (paca[real_cpu].kvm_hstate.xics_phys)
			xics_wake_cpu(real_cpu);
93 94 95
		else
#endif
		if (cpu_online(cpu))
96 97 98 99 100
			smp_send_reschedule(cpu);
	}
	put_cpu();
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
 * of the vcpu that has taken responsibility for running the vcore
 * (i.e. vc->runner).  The stolen times are measured in units of
 * timebase ticks.  (Note that the != TB_NIL checks below are
 * purely defensive; they should never fail.)
 */

135
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
136
{
137 138
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

139 140 141
	spin_lock(&vcpu->arch.tbacct_lock);
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
	    vc->preempt_tb != TB_NIL) {
142
		vc->stolen_tb += mftb() - vc->preempt_tb;
143 144 145 146 147 148 149 150
		vc->preempt_tb = TB_NIL;
	}
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
	spin_unlock(&vcpu->arch.tbacct_lock);
151 152
}

153
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
154
{
155 156
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

157
	spin_lock(&vcpu->arch.tbacct_lock);
158 159
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
160 161 162
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
	spin_unlock(&vcpu->arch.tbacct_lock);
163 164
}

165
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
166 167
{
	vcpu->arch.shregs.msr = msr;
168
	kvmppc_end_cede(vcpu);
169 170
}

171
void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
172 173 174 175
{
	vcpu->arch.pvr = pvr;
}

176 177 178 179 180 181 182 183 184 185 186
int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		if (!cpu_has_feature(CPU_FTR_ARCH_206))
			return -EINVAL;	/* 970 has no compat mode support */

		switch (arch_compat) {
		case PVR_ARCH_205:
187 188 189 190 191
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
192 193 194
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
195 196 197
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
198 199 200 201
			break;
		default:
			return -EINVAL;
		}
202 203 204 205 206 207 208

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
209 210 211 212 213 214 215 216 217 218
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
248
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
249 250 251
	       vcpu->arch.last_inst);
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
270
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
271 272 273
	vpa->yield_count = 1;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

306 307 308 309 310
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
311
	unsigned long len, nb;
312 313
	void *va;
	struct kvm_vcpu *tvcpu;
314 315 316
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
317 318 319 320 321

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

322 323 324 325 326
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
327
			return H_PARAMETER;
328 329

		/* convert logical addr to kernel addr and read length */
330 331
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
332
			return H_PARAMETER;
333 334
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
335
		else
336
			len = ((struct reg_vpa *)va)->length.word;
337
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
354
			break;
355 356 357 358 359 360
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
361
			break;
362 363 364 365 366
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
367
			break;
368 369 370 371 372 373 374 375 376

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
377
			break;
378 379 380 381 382 383 384 385 386 387

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
388
			break;
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
409
	}
410

411 412
	spin_unlock(&tvcpu->arch.vpa_update_lock);

413
	return err;
414 415
}

416
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
417
{
418
	struct kvm *kvm = vcpu->kvm;
419 420
	void *va;
	unsigned long nb;
421
	unsigned long gpa;
422

423 424 425 426 427 428 429 430 431 432 433 434 435 436
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
437
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
438 439 440 441 442
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
443
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
444 445 446 447 448 449 450 451 452
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
453
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
454
		va = NULL;
455 456
	}
	if (vpap->pinned_addr)
457 458 459
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
460
	vpap->pinned_addr = va;
461
	vpap->dirty = false;
462 463 464 465 466 467
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
468 469 470 471 472
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

473 474
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
475
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
476 477
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
478 479
	}
	if (vcpu->arch.dtl.update_pending) {
480
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
481 482 483 484
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
485
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
486 487 488
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;

	/*
	 * If we are the task running the vcore, then since we hold
	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
	 * can't be updated, so we don't need the tbacct_lock.
	 * If the vcore is inactive, it can't become active (since we
	 * hold the vcore lock), so the vcpu load/put functions won't
	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
	 */
	if (vc->vcore_state != VCORE_INACTIVE &&
	    vc->runner->arch.run_task != current) {
		spin_lock(&vc->runner->arch.tbacct_lock);
		p = vc->stolen_tb;
		if (vc->preempt_tb != TB_NIL)
			p += now - vc->preempt_tb;
		spin_unlock(&vc->runner->arch.tbacct_lock);
	} else {
		p = vc->stolen_tb;
	}
	return p;
}

518 519 520 521 522
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
523 524 525
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
526 527 528

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
529 530 531 532 533 534 535 536
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
	spin_lock(&vcpu->arch.tbacct_lock);
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
	spin_unlock(&vcpu->arch.tbacct_lock);
537 538 539 540 541
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
542
	dt->timebase = now + vc->tb_offset;
543
	dt->enqueue_to_dispatch_time = stolen;
544 545 546 547 548 549 550 551 552
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
553
	vcpu->arch.dtl.dirty = true;
554 555
}

556 557 558 559 560
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
561
	int idx, rc;
562 563

	switch (req) {
564
	case H_ENTER:
565
		idx = srcu_read_lock(&vcpu->kvm->srcu);
566 567 568 569
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
570
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
571
		break;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
591 592 593 594 595 596 597 598 599
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		kvm_vcpu_yield_to(tvcpu);
600 601 602 603 604 605
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
606 607 608 609 610 611 612 613 614 615 616 617 618
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

		rc = kvmppc_rtas_hcall(vcpu);

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
619 620 621 622 623

	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
624 625
	case H_IPOLL:
	case H_XIRR_X:
626 627 628 629
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
		} /* fallthrough */
630 631 632 633 634 635 636 637
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

638 639
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
640 641 642 643 644 645 646 647 648 649 650 651 652 653
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
654
	case BOOK3S_INTERRUPT_H_DOORBELL:
655 656 657 658 659 660
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
661 662 663 664 665 666 667 668 669 670 671
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

691 692 693 694
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

695 696 697 698 699 700 701 702 703
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
704 705 706 707 708
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
709 710
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
711
		r = RESUME_PAGE_FAULT;
712 713
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
714 715 716
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
717 718 719 720 721 722 723
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
724 725 726 727 728 729 730 731 732 733
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		r = RESUME_GUEST;
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
734 735 736 737 738 739 740
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
741
		run->hw.hardware_exit_reason = vcpu->arch.trap;
742 743 744 745 746 747 748
		r = RESUME_HOST;
		break;
	}

	return r;
}

749 750
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
751 752 753 754
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
755
	sregs->pvr = vcpu->arch.pvr;
756 757 758 759 760 761 762 763
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

764 765
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
766 767 768
{
	int i, j;

769
	kvmppc_set_pvr_hv(vcpu, sregs->pvr);
770 771 772 773 774 775 776 777 778 779 780 781 782 783

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

784 785 786 787 788 789 790 791 792
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

	spin_lock(&vc->lock);
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
793
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
794 795
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
796 797
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
798 799 800 801
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
}

802 803
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
804
{
805 806
	int r = 0;
	long int i;
807

808
	switch (id) {
809
	case KVM_REG_PPC_HIOR:
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
830
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
831 832 833 834 835 836
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
837
		break;
838 839 840 841
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
842 843 844 845 846 847
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
		break;
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_FSCR:
		*val = get_reg_val(id, vcpu->arch.fscr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_EBBHR:
		*val = get_reg_val(id, vcpu->arch.ebbhr);
		break;
	case KVM_REG_PPC_EBBRR:
		*val = get_reg_val(id, vcpu->arch.ebbrr);
		break;
	case KVM_REG_PPC_BESCR:
		*val = get_reg_val(id, vcpu->arch.bescr);
		break;
	case KVM_REG_PPC_TAR:
		*val = get_reg_val(id, vcpu->arch.tar);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_IC:
		*val = get_reg_val(id, vcpu->arch.ic);
		break;
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vtb);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
		break;
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
934 935 936
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
937 938 939
	case KVM_REG_PPC_LPCR:
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
940 941 942
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
943 944 945
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
946
	default:
947
		r = -EINVAL;
948 949 950 951 952 953
		break;
	}

	return r;
}

954 955
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
956
{
957 958
	int r = 0;
	long int i;
959
	unsigned long addr, len;
960

961
	switch (id) {
962 963
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
964
		if (set_reg_val(id, *val))
965 966
			r = -EINVAL;
		break;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
985
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
986 987 988 989 990 991 992
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
993 994 995 996
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
997 998 999 1000 1001 1002
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_FSCR:
		vcpu->arch.fscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_EBBHR:
		vcpu->arch.ebbhr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_EBBRR:
		vcpu->arch.ebbrr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_BESCR:
		vcpu->arch.bescr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TAR:
		vcpu->arch.tar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_IC:
		vcpu->arch.ic = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_VTB:
		vcpu->arch.vtb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
		break;
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1095 1096
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1097 1098 1099 1100
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1101 1102 1103 1104 1105
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1106 1107 1108
	case KVM_REG_PPC_LPCR:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
		break;
1109 1110 1111
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1112 1113 1114
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1115
	default:
1116
		r = -EINVAL;
1117 1118 1119 1120 1121 1122
		break;
	}

	return r;
}

1123 1124
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1125 1126
{
	struct kvm_vcpu *vcpu;
1127 1128 1129
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1130

1131 1132 1133 1134 1135
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1136
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1148
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1149
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1150 1151
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1152 1153 1154

	kvmppc_mmu_book3s_hv_init(vcpu);

1155
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
1166
			init_waitqueue_head(&vcore->wq);
1167
			vcore->preempt_tb = TB_NIL;
1168
			vcore->lpcr = kvm->arch.lpcr;
1169 1170
			vcore->first_vcpuid = core * threads_per_core;
			vcore->kvm = kvm;
1171 1172
		}
		kvm->arch.vcores[core] = vcore;
1173
		kvm->arch.online_vcores++;
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1184
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1185

1186 1187 1188
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1189 1190 1191
	return vcpu;

free_vcpu:
1192
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1193 1194 1195 1196
out:
	return ERR_PTR(err);
}

1197 1198 1199 1200 1201 1202 1203
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1204
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1205
{
1206
	spin_lock(&vcpu->arch.vpa_update_lock);
1207 1208 1209
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1210
	spin_unlock(&vcpu->arch.vpa_update_lock);
1211
	kvm_vcpu_uninit(vcpu);
1212
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1213 1214
}

1215 1216 1217 1218 1219 1220
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1221
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1222
{
1223
	unsigned long dec_nsec, now;
1224

1225 1226 1227 1228
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1229
		kvmppc_core_prepare_to_enter(vcpu);
1230
		return;
1231
	}
1232 1233 1234 1235 1236
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1237 1238
}

1239
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1240
{
1241 1242 1243 1244 1245
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1246 1247
}

1248
extern void __kvmppc_vcore_entry(void);
1249

1250 1251
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1252
{
1253 1254
	u64 now;

1255 1256
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1257 1258 1259 1260 1261 1262 1263
	spin_lock(&vcpu->arch.tbacct_lock);
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	spin_unlock(&vcpu->arch.tbacct_lock);
1264 1265 1266 1267
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1268 1269 1270 1271 1272 1273 1274 1275 1276
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
1277
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1308 1309 1310 1311 1312 1313
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1314 1315 1316 1317
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1318 1319 1320 1321
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
1322
	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1323
	vcpu->cpu = vc->pcpu;
1324
	smp_wmb();
1325
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1326
	if (cpu != smp_processor_id()) {
1327
#ifdef CONFIG_KVM_XICS
1328
		xics_wake_cpu(cpu);
1329
#endif
1330 1331
		if (vcpu->arch.ptid)
			++vc->n_woken;
1332
	}
1333 1334
#endif
}
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
1355 1356
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	/* Grab all hw threads so they can't go into the kernel */
	for (thr = 1; thr < threads_per_core; ++thr) {
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1379 1380 1381 1382 1383 1384 1385
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1386
static void kvmppc_run_core(struct kvmppc_vcore *vc)
1387
{
1388
	struct kvm_vcpu *vcpu, *vnext;
1389 1390
	long ret;
	u64 now;
1391
	int i, need_vpa_update;
1392
	int srcu_idx;
1393
	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1394 1395

	/* don't start if any threads have a signal pending */
1396 1397
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1398
		if (signal_pending(vcpu->arch.run_task))
1399 1400 1401 1402 1403
			return;
		if (vcpu->arch.vpa.update_pending ||
		    vcpu->arch.slb_shadow.update_pending ||
		    vcpu->arch.dtl.update_pending)
			vcpus_to_update[need_vpa_update++] = vcpu;
1404 1405 1406 1407 1408 1409 1410 1411 1412
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
1413
	vc->vcore_state = VCORE_STARTING;
1414 1415 1416 1417 1418 1419 1420 1421 1422
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
1423 1424
		for (i = 0; i < need_vpa_update; ++i)
			kvmppc_update_vpas(vcpus_to_update[i]);
1425 1426
		spin_lock(&vc->lock);
	}
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 */
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1438
	vc->pcpu = smp_processor_id();
1439
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1440
		kvmppc_start_thread(vcpu);
1441
		kvmppc_create_dtl_entry(vcpu, vc);
1442
	}
1443

1444 1445 1446 1447
	/* Set this explicitly in case thread 0 doesn't have a vcpu */
	get_paca()->kvm_hstate.kvm_vcore = vc;
	get_paca()->kvm_hstate.ptid = 0;

1448
	vc->vcore_state = VCORE_RUNNING;
1449
	preempt_disable();
1450
	spin_unlock(&vc->lock);
1451

1452
	kvm_guest_enter();
1453

1454
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1455

1456
	__kvmppc_vcore_entry();
1457

1458
	spin_lock(&vc->lock);
1459 1460 1461 1462
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1463 1464
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
1465 1466
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
1467
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1468
	vc->vcore_state = VCORE_EXITING;
1469 1470
	spin_unlock(&vc->lock);

1471
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1472

1473 1474
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1475 1476 1477 1478 1479
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

1480
	spin_lock(&vc->lock);
1481
	now = get_tb();
1482 1483 1484 1485 1486
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1487 1488 1489

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
1490 1491
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);
1492

1493 1494
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1495 1496 1497 1498 1499 1500 1501

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1502
	}
1503 1504

 out:
1505
	vc->vcore_state = VCORE_INACTIVE;
1506 1507 1508 1509 1510 1511 1512 1513 1514
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1515 1516 1517 1518 1519
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1520 1521 1522
{
	DEFINE_WAIT(wait);

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
1540
	schedule();
1541 1542 1543 1544
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1545

1546 1547 1548 1549 1550
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1551

1552 1553 1554
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
1555
	kvmppc_update_vpas(vcpu);
1556 1557 1558 1559 1560 1561

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1562
	vcpu->arch.ceded = 0;
1563 1564
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1565
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1566
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1567
	vcpu->arch.busy_preempt = TB_NIL;
1568 1569 1570
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1571 1572 1573 1574 1575
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
1576
	if (!signal_pending(current)) {
1577 1578
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
1579
			kvmppc_create_dtl_entry(vcpu, vc);
1580
			kvmppc_start_thread(vcpu);
1581 1582
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
1583 1584
		}

1585
	}
1586

1587 1588
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
1589
		if (vc->vcore_state != VCORE_INACTIVE) {
1590 1591 1592 1593 1594 1595 1596
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1597
			kvmppc_core_prepare_to_enter(v);
1598 1599 1600 1601 1602 1603 1604 1605
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1606 1607 1608 1609
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		vc->runner = vcpu;
		n_ceded = 0;
1610
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1611 1612
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
1613 1614 1615
			else
				v->arch.ceded = 0;
		}
1616 1617 1618 1619
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);
1620
		vc->runner = NULL;
1621
	}
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
1643 1644 1645 1646
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1647 1648
}

1649
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1650 1651
{
	int r;
1652
	int srcu_idx;
1653

1654 1655 1656 1657 1658
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1659 1660
	kvmppc_core_prepare_to_enter(vcpu);

1661 1662 1663 1664 1665 1666
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1667 1668 1669 1670 1671
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1672
	if (!vcpu->kvm->arch.rma_setup_done) {
1673
		r = kvmppc_hv_setup_htab_rma(vcpu);
1674
		if (r)
1675
			goto out;
1676
	}
1677 1678 1679 1680 1681

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1682
	vcpu->arch.pgdir = current->mm->pgd;
1683
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1684

1685 1686 1687 1688 1689 1690
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1691
			kvmppc_core_prepare_to_enter(vcpu);
1692 1693 1694 1695 1696
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1697 1698
		}
	} while (r == RESUME_GUEST);
1699 1700

 out:
1701
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1702
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1703 1704 1705
	return r;
}

1706

1707
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1708
   Assumes POWER7 or PPC970. */
1709 1710 1711 1712
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1713 1714 1715
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page;
1736
	struct kvm_rma_info *ri = vma->vm_file->private_data;
1737

1738
	if (vmf->pgoff >= kvm_rma_pages)
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
1753
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1754 1755 1756 1757 1758 1759
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1760
	struct kvm_rma_info *ri = filp->private_data;
1761 1762 1763 1764 1765

	kvm_release_rma(ri);
	return 0;
}

1766
static const struct file_operations kvm_rma_fops = {
1767 1768 1769 1770
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

1771 1772
static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
				      struct kvm_allocate_rma *ret)
1773 1774
{
	long fd;
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	struct kvm_rma_info *ri;
	/*
	 * Only do this on PPC970 in HV mode
	 */
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_201))
		return -EINVAL;

	if (!kvm_rma_pages)
		return -EINVAL;
1785 1786 1787 1788 1789

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

1790
	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1791 1792 1793
	if (fd < 0)
		kvm_release_rma(ri);

1794
	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1795 1796 1797
	return fd;
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
1808 1809 1810 1811 1812 1813 1814
	/*
	 * Only return base page encoding. We don't want to return
	 * all the supporting pte_enc, because our H_ENTER doesn't
	 * support MPSS yet. Once they do, we can start passing all
	 * support pte_enc here
	 */
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
1815 1816 1817
	(*sps)++;
}

1818 1819
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1837 1838 1839
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1840 1841
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1842 1843 1844 1845 1846 1847 1848 1849
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
1850
	if (log->slot >= KVM_USER_MEM_SLOTS)
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1861
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1875
static void unpin_slot(struct kvm_memory_slot *memslot)
1876
{
1877 1878 1879
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1880

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

1895 1896
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1897 1898 1899 1900
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
1901
	}
1902 1903 1904 1905 1906 1907 1908
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

1909 1910
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
1911 1912 1913 1914 1915
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
1916

1917 1918
	return 0;
}
1919

1920 1921 1922
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
1923
{
1924
	unsigned long *phys;
1925

1926 1927 1928 1929 1930 1931 1932
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
1933
	}
1934 1935

	return 0;
1936 1937
}

1938 1939 1940
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
1941
{
1942 1943 1944
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

1945
	if (npages && old->npages) {
1946 1947 1948 1949 1950 1951 1952 1953 1954
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
1955 1956
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

1983 1984 1985 1986 1987
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

1988
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1989 1990 1991
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1992
	struct kvm_rma_info *ri = NULL;
1993 1994 1995
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1996 1997
	unsigned long lpcr = 0, senc;
	unsigned long lpcr_mask = 0;
1998 1999 2000 2001
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
2002
	unsigned long i, npages;
2003
	int srcu_idx;
2004 2005 2006 2007

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

2018
	/* Look up the memslot for guest physical address 0 */
2019
	srcu_idx = srcu_read_lock(&kvm->srcu);
2020
	memslot = gfn_to_memslot(kvm, 0);
2021

2022 2023 2024
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2025
		goto out_srcu;
2026 2027 2028 2029 2030 2031 2032 2033 2034

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
2035
	porder = __ilog2(psize);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
2049
			goto out_srcu;
2050 2051
		}

2052 2053 2054 2055
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
2056
			goto out_srcu;
2057

2058
		/* Update VRMASD field in the LPCR */
2059
		senc = slb_pgsize_encoding(psize);
2060 2061
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2062 2063 2064
		lpcr_mask = LPCR_VRMASD;
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
2065 2066

		/* Create HPTEs in the hash page table for the VRMA */
2067
		kvmppc_map_vrma(vcpu, memslot, porder);
2068 2069 2070

	} else {
		/* Set up to use an RMO region */
2071
		rma_size = kvm_rma_pages;
2072 2073 2074
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
2075
		rmls = lpcr_rmls(rma_size);
2076
		err = -EINVAL;
2077
		if ((long)rmls < 0) {
2078
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2079
			goto out_srcu;
2080 2081 2082
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
2083 2084 2085 2086

		/* Update LPCR and RMOR */
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
2087 2088 2089
			lpcr_mask = (1ul << HID4_RMLS0_SH) |
				(3ul << HID4_RMLS2_SH) | HID4_RMOR;
			lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2090 2091 2092 2093 2094 2095
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
2096 2097
			lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
			lpcr = rmls << LPCR_RMLS_SH;
2098
			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2099
		}
2100
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2101 2102
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

2103
		/* Initialize phys addrs of pages in RMO */
2104
		npages = kvm_rma_pages;
2105
		porder = __ilog2(npages);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
2116 2117
	}

2118 2119
	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);

2120 2121 2122 2123
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
2124 2125
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
2126 2127 2128
 out:
	mutex_unlock(&kvm->lock);
	return err;
2129

2130 2131
 up_out:
	up_read(&current->mm->mmap_sem);
2132
	goto out_srcu;
2133 2134
}

2135
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2136
{
2137
	unsigned long lpcr, lpid;
2138

2139 2140 2141
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
2142
	if ((long)lpid < 0)
2143 2144
		return -ENOMEM;
	kvm->arch.lpid = lpid;
2145

2146 2147 2148 2149 2150 2151 2152
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

2153 2154
	kvm->arch.rma = NULL;

2155
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2170 2171 2172
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2173 2174 2175
		/* On POWER8 turn on online bit to enable PURR/SPURR */
		if (cpu_has_feature(CPU_FTR_ARCH_207S))
			lpcr |= LPCR_ONL;
2176 2177
	}
	kvm->arch.lpcr = lpcr;
2178

2179
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2180
	spin_lock_init(&kvm->arch.slot_phys_lock);
2181 2182 2183 2184 2185 2186 2187

	/*
	 * Don't allow secondary CPU threads to come online
	 * while any KVM VMs exist.
	 */
	inhibit_secondary_onlining();

2188
	return 0;
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198 2199
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

	for (i = 0; i < KVM_MAX_VCORES; ++i)
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

2200
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2201
{
2202 2203
	uninhibit_secondary_onlining();

2204
	kvmppc_free_vcores(kvm);
2205 2206 2207 2208 2209
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

2210 2211 2212
	kvmppc_free_hpt(kvm);
}

2213 2214 2215
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
2216
{
2217
	return EMULATE_FAIL;
2218 2219
}

2220 2221
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
2222 2223 2224 2225
{
	return EMULATE_FAIL;
}

2226 2227
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
2228 2229 2230 2231
{
	return EMULATE_FAIL;
}

2232
static int kvmppc_core_check_processor_compat_hv(void)
2233
{
2234 2235 2236
	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return -EIO;
	return 0;
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_ALLOCATE_RMA: {
		struct kvm_allocate_rma rma;
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
		if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
			r = -EFAULT;
		break;
	}

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

2291
static struct kvmppc_ops kvm_ops_hv = {
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
};

static int kvmppc_book3s_init_hv(void)
2326 2327
{
	int r;
2328 2329 2330 2331 2332
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
2333 2334
		return r;

2335 2336
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
2337

2338
	r = kvmppc_mmu_hv_init();
2339 2340 2341
	return r;
}

2342
static void kvmppc_book3s_exit_hv(void)
2343
{
2344
	kvmppc_hv_ops = NULL;
2345 2346
}

2347 2348
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
2349
MODULE_LICENSE("GPL");
2350 2351
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");