stmmac_main.c 78.2 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

31
#include <linux/clk.h>
32 33 34 35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
41
#include <linux/if.h>
42 43
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
44
#include <linux/slab.h>
45
#include <linux/prefetch.h>
46 47 48 49
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
50 51
#include <linux/net_tstamp.h>
#include "stmmac_ptp.h"
52
#include "stmmac.h"
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
74
#ifdef STMMAC_XMIT_DEBUG
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

93
int phyaddr = -1;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

129 130 131 132 133 134
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))

135 136 137 138 139 140 141
/* By default the driver will use the ring mode to manage tx and rx descriptors
 * but passing this value so user can force to use the chain instead of the ring
 */
static unsigned int chain_mode;
module_param(chain_mode, int, S_IRUGO);
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");

142 143
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

144 145 146 147 148
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

149 150
#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
172 173
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

	clk_rate = clk_get_rate(priv->stmmac_clk);

	/* Platform provided default clk_csr would be assumed valid
	 * for all other cases except for the below mentioned ones. */
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
			priv->clk_csr = STMMAC_CSR_250_300M;
	} /* For values higher than the IEEE 802.3 specified frequency
	   * we can not estimate the proper divider as it is not known
	   * the frequency of clk_csr_i. So we do not change the default
	   * divider. */
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

225 226 227 228 229 230 231 232 233 234 235 236
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
	/* Check and enter in LPI mode */
	if ((priv->dirty_tx == priv->cur_tx) &&
	    (priv->tx_path_in_lpi_mode == false))
		priv->hw->mac->set_eee_mode(priv->ioaddr);
}

void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
	/* Exit and disable EEE in case of we are are in LPI state. */
	priv->hw->mac->reset_eee_mode(priv->ioaddr);
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
 * stmmac_eee_ctrl_timer
 * @arg : data hook
 * Description:
 *  If there is no data transfer and if we are not in LPI state,
 *  then MAC Transmitter can be moved to LPI state.
 */
static void stmmac_eee_ctrl_timer(unsigned long arg)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)arg;

	stmmac_enable_eee_mode(priv);
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
}

/**
 * stmmac_eee_init
 * @priv: private device pointer
 * Description:
 *  If the EEE support has been enabled while configuring the driver,
 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 *  phy can also manage EEE, so enable the LPI state and start the timer
 *  to verify if the tx path can enter in LPI state.
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
	bool ret = false;

	/* MAC core supports the EEE feature. */
	if (priv->dma_cap.eee) {
		/* Check if the PHY supports EEE */
		if (phy_init_eee(priv->phydev, 1))
			goto out;

		priv->eee_active = 1;
		init_timer(&priv->eee_ctrl_timer);
		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
		priv->eee_ctrl_timer.data = (unsigned long)priv;
		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
		add_timer(&priv->eee_ctrl_timer);

		priv->hw->mac->set_eee_timer(priv->ioaddr,
					     STMMAC_DEFAULT_LIT_LS_TIMER,
					     priv->tx_lpi_timer);

		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");

		ret = true;
	}
out:
	return ret;
}

static void stmmac_eee_adjust(struct stmmac_priv *priv)
{
	/* When the EEE has been already initialised we have to
	 * modify the PLS bit in the LPI ctrl & status reg according
	 * to the PHY link status. For this reason.
	 */
	if (priv->eee_enabled)
		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/* stmmac_get_tx_hwtstamp:
 * @priv : pointer to private device structure.
 * @entry : descriptor index to be used.
 * @skb : the socket buffer
 * Description :
 * This function will read timestamp from the descriptor & pass it to stack.
 * and also perform some sanity checks.
 */
static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
				   unsigned int entry,
				   struct sk_buff *skb)
{
	struct skb_shared_hwtstamps shhwtstamp;
	u64 ns;
	void *desc = NULL;

	if (!priv->hwts_tx_en)
		return;

	/* if skb doesn't support hw tstamp */
	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
		return;

	if (priv->adv_ts)
		desc = (priv->dma_etx + entry);
	else
		desc = (priv->dma_tx + entry);

	/* check tx tstamp status */
	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
		return;

	/* get the valid tstamp */
	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);

	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamp.hwtstamp = ns_to_ktime(ns);
	/* pass tstamp to stack */
	skb_tstamp_tx(skb, &shhwtstamp);

	return;
}

/* stmmac_get_rx_hwtstamp:
 * @priv : pointer to private device structure.
 * @entry : descriptor index to be used.
 * @skb : the socket buffer
 * Description :
 * This function will read received packet's timestamp from the descriptor
 * and pass it to stack. It also perform some sanity checks.
 */
static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
				   unsigned int entry,
				   struct sk_buff *skb)
{
	struct skb_shared_hwtstamps *shhwtstamp = NULL;
	u64 ns;
	void *desc = NULL;

	if (!priv->hwts_rx_en)
		return;

	if (priv->adv_ts)
		desc = (priv->dma_erx + entry);
	else
		desc = (priv->dma_rx + entry);

	/* if rx tstamp is not valid */
	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
		return;

	/* get valid tstamp */
	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
	shhwtstamp = skb_hwtstamps(skb);
	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamp->hwtstamp = ns_to_ktime(ns);
}

/**
 *  stmmac_hwtstamp_ioctl - control hardware timestamping.
 *  @dev: device pointer.
 *  @ifr: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  Description:
 *  This function configures the MAC to enable/disable both outgoing(TX)
 *  and incoming(RX) packets time stamping based on user input.
 *  Return Value:
 *  0 on success and an appropriate -ve integer on failure.
 */
static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct hwtstamp_config config;
	struct timespec now;
	u64 temp = 0;
	u32 ptp_v2 = 0;
	u32 tstamp_all = 0;
	u32 ptp_over_ipv4_udp = 0;
	u32 ptp_over_ipv6_udp = 0;
	u32 ptp_over_ethernet = 0;
	u32 snap_type_sel = 0;
	u32 ts_master_en = 0;
	u32 ts_event_en = 0;
	u32 value = 0;

	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
		netdev_alert(priv->dev, "No support for HW time stamping\n");
		priv->hwts_tx_en = 0;
		priv->hwts_rx_en = 0;

		return -EOPNOTSUPP;
	}

	if (copy_from_user(&config, ifr->ifr_data,
		sizeof(struct hwtstamp_config)))
		return -EFAULT;

	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
		 __func__, config.flags, config.tx_type, config.rx_filter);

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		priv->hwts_tx_en = 0;
		break;
	case HWTSTAMP_TX_ON:
		priv->hwts_tx_en = 1;
		break;
	default:
		return -ERANGE;
	}

	if (priv->adv_ts) {
		switch (config.rx_filter) {
		/* time stamp no incoming packet at all */
		case HWTSTAMP_FILTER_NONE:
			config.rx_filter = HWTSTAMP_FILTER_NONE;
			break;

		/* PTP v1, UDP, any kind of event packet */
		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
			/* take time stamp for all event messages */
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v1, UDP, Sync packet */
		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v1, UDP, Delay_req packet */
		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v2, UDP, any kind of event packet */
		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for all event messages */
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v2, UDP, Sync packet */
		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v2, UDP, Delay_req packet */
		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		/* PTP v2/802.AS1, any layer, any kind of event packet */
		case HWTSTAMP_FILTER_PTP_V2_EVENT:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for all event messages */
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		/* PTP v2/802.AS1, any layer, Sync packet */
		case HWTSTAMP_FILTER_PTP_V2_SYNC:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		/* PTP v2/802.AS1, any layer, Delay_req packet */
		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		/* time stamp any incoming packet */
		case HWTSTAMP_FILTER_ALL:
			config.rx_filter = HWTSTAMP_FILTER_ALL;
			tstamp_all = PTP_TCR_TSENALL;
			break;

		default:
			return -ERANGE;
		}
	} else {
		switch (config.rx_filter) {
		case HWTSTAMP_FILTER_NONE:
			config.rx_filter = HWTSTAMP_FILTER_NONE;
			break;
		default:
			/* PTP v1, UDP, any kind of event packet */
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
			break;
		}
	}
	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);

	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
	else {
		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
			tstamp_all | ptp_v2 | ptp_over_ethernet |
			ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
			ts_master_en | snap_type_sel);

		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);

		/* program Sub Second Increment reg */
		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);

		/* calculate default added value:
		 * formula is :
		 * addend = (2^32)/freq_div_ratio;
		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
		 *       achive 20ns accuracy.
		 *
		 * 2^x * y == (y << x), hence
		 * 2^32 * 50000000 ==> (50000000 << 32)
		 */
		temp = (u64)(50000000ULL << 32);
		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
		priv->hw->ptp->config_addend(priv->ioaddr,
					     priv->default_addend);

		/* initialize system time */
		getnstimeofday(&now);
		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
					    now.tv_nsec);
	}

	return copy_to_user(ifr->ifr_data, &config,
			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
}

621
static int stmmac_init_ptp(struct stmmac_priv *priv)
622
{
623 624 625 626 627 628 629 630 631 632 633 634
	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
		return -EOPNOTSUPP;

	if (netif_msg_hw(priv)) {
		if (priv->dma_cap.time_stamp) {
			pr_debug("IEEE 1588-2002 Time Stamp supported\n");
			priv->adv_ts = 0;
		}
		if (priv->dma_cap.atime_stamp && priv->extend_desc) {
			pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
			priv->adv_ts = 1;
		}
635 636 637 638 639
	}

	priv->hw->ptp = &stmmac_ptp;
	priv->hwts_tx_en = 0;
	priv->hwts_rx_en = 0;
640 641 642 643 644 645 646

	return stmmac_ptp_register(priv);
}

static void stmmac_release_ptp(struct stmmac_priv *priv)
{
	stmmac_ptp_unregister(priv);
647 648
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
669

670
	if (phydev->link) {
671
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
672 673 674 675 676 677

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
678
				ctrl &= ~priv->hw->link.duplex;
679
			else
680
				ctrl |= priv->hw->link.duplex;
681 682 683 684
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
685
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
686
						 fc, pause_time);
687 688 689 690 691

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
692
				if (likely(priv->plat->has_gmac))
693
					ctrl &= ~priv->hw->link.port;
694
					stmmac_hw_fix_mac_speed(priv);
695 696 697
				break;
			case 100:
			case 10:
698
				if (priv->plat->has_gmac) {
699
					ctrl |= priv->hw->link.port;
700
					if (phydev->speed == SPEED_100) {
701
						ctrl |= priv->hw->link.speed;
702
					} else {
703
						ctrl &= ~(priv->hw->link.speed);
704 705
					}
				} else {
706
					ctrl &= ~priv->hw->link.port;
707
				}
708
				stmmac_hw_fix_mac_speed(priv);
709 710 711 712 713 714 715 716 717 718 719
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

720
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

736 737
	stmmac_eee_adjust(priv);

738 739 740 741 742
	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
{
	int interface = priv->plat->interface;

	if (priv->dma_cap.pcs) {
		if ((interface & PHY_INTERFACE_MODE_RGMII) ||
		    (interface & PHY_INTERFACE_MODE_RGMII_ID) ||
		    (interface & PHY_INTERFACE_MODE_RGMII_RXID) ||
		    (interface & PHY_INTERFACE_MODE_RGMII_TXID)) {
			pr_debug("STMMAC: PCS RGMII support enable\n");
			priv->pcs = STMMAC_PCS_RGMII;
		} else if (interface & PHY_INTERFACE_MODE_SGMII) {
			pr_debug("STMMAC: PCS SGMII support enable\n");
			priv->pcs = STMMAC_PCS_SGMII;
		}
	}
}

761 762 763 764 765 766 767 768 769 770 771 772
/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
773
	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
774
	char bus_id[MII_BUS_ID_SIZE];
775
	int interface = priv->plat->interface;
776 777 778 779
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

780 781 782 783 784 785 786
	if (priv->plat->phy_bus_name)
		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
				priv->plat->phy_bus_name, priv->plat->bus_id);
	else
		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
				priv->plat->bus_id);

787
	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
788
		 priv->plat->phy_addr);
789
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
790

791
	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
792 793 794 795 796 797

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

798
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
799 800 801 802
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
803

804 805 806 807 808 809 810 811 812 813 814 815
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
816
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
817 818 819 820 821 822 823

	priv->phydev = phydev;

	return 0;
}

/**
824
 * stmmac_display_ring
825 826
 * @p: pointer to the ring.
 * @size: size of the ring.
827
 * Description: display the control/status and buffer descriptors.
828
 */
829
static void stmmac_display_ring(void *head, int size, int extend_desc)
830 831
{
	int i;
832 833 834
	struct dma_extended_desc *ep = (struct dma_extended_desc *) head;
	struct dma_desc *p = (struct dma_desc *) head;

835
	for (i = 0; i < size; i++) {
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		u64 x;
		if (extend_desc) {
			x = *(u64 *) ep;
			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				i, (unsigned int) virt_to_phys(ep),
				(unsigned int) x, (unsigned int) (x >> 32),
				ep->basic.des2, ep->basic.des3);
			ep++;
		} else {
			x = *(u64 *) p;
			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
				i, (unsigned int) virt_to_phys(p),
				(unsigned int) x, (unsigned int) (x >> 32),
				p->des2, p->des3);
			p++;
		}
852 853 854 855
		pr_info("\n");
	}
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static void stmmac_display_rings(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;

	if (priv->extend_desc) {
		pr_info("Extended RX descriptor ring:\n");
		stmmac_display_ring((void *) priv->dma_erx, rxsize, 1);
		pr_info("Extended TX descriptor ring:\n");
		stmmac_display_ring((void *) priv->dma_etx, txsize, 1);
	} else {
		pr_info("RX descriptor ring:\n");
		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
		pr_info("TX descriptor ring:\n");
		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
	}
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
static void stmmac_clear_descriptors(struct stmmac_priv *priv)
{
	int i;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;

	/* Clear the Rx/Tx descriptors */
	for (i = 0; i < rxsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
						     priv->use_riwt, priv->mode,
						     (i == rxsize - 1));
		else
			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
						     priv->use_riwt, priv->mode,
						     (i == rxsize - 1));
	for (i = 0; i < txsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
						     priv->mode,
						     (i == txsize - 1));
		else
			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
						     priv->mode,
						     (i == txsize - 1));
}

static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
				  int i)
{
	struct sk_buff *skb;

	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
				 GFP_KERNEL);
	if (unlikely(skb == NULL)) {
		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
		return 1;
	}
	skb_reserve(skb, NET_IP_ALIGN);
	priv->rx_skbuff[i] = skb;
	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						priv->dma_buf_sz,
						DMA_FROM_DEVICE);

	p->des2 = priv->rx_skbuff_dma[i];

	if ((priv->mode == STMMAC_RING_MODE) &&
	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
		priv->hw->ring->init_desc3(p);

	return 0;
}

943 944 945 946
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
947 948
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
949 950 951 952 953 954 955
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
956
	unsigned int bfsize = 0;
957

958 959
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
960 961
	if (priv->mode == STMMAC_RING_MODE)
		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
962

963
	if (bfsize < BUF_SIZE_16KiB)
964
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
965 966 967 968

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	if (priv->extend_desc) {
		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
						   sizeof(struct
							  dma_extended_desc),
						   &priv->dma_rx_phy,
						   GFP_KERNEL);
		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
						   sizeof(struct
							  dma_extended_desc),
						   &priv->dma_tx_phy,
						   GFP_KERNEL);
		if ((!priv->dma_erx) || (!priv->dma_etx))
			return;
	} else {
		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);
		if ((!priv->dma_rx) || (!priv->dma_tx))
			return;
	}

995 996 997 998
	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
					    GFP_KERNEL);
	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
					GFP_KERNEL);
999 1000
	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
					GFP_KERNEL);
1001 1002
	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
					GFP_KERNEL);
1003 1004 1005
	if (netif_msg_drv(priv))
		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1006 1007

	/* RX INITIALIZATION */
1008
	DBG(probe, INFO, "stmmac: SKB addresses:\nskb\t\tskb data\tdma data\n");
1009
	for (i = 0; i < rxsize; i++) {
1010 1011 1012 1013 1014
		struct dma_desc *p;
		if (priv->extend_desc)
			p = &((priv->dma_erx + i)->basic);
		else
			p = priv->dma_rx + i;
1015

1016
		if (stmmac_init_rx_buffers(priv, p, i))
1017
			break;
1018

1019 1020 1021 1022 1023 1024 1025 1026
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	/* Setup the chained descriptor addresses */
	if (priv->mode == STMMAC_CHAIN_MODE) {
		if (priv->extend_desc) {
			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
					      rxsize, 1);
			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
					      txsize, 1);
		} else {
			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
					      rxsize, 0);
			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
					      txsize, 0);
		}
	}

1042 1043
	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
1044 1045 1046 1047 1048 1049
		struct dma_desc *p;
		if (priv->extend_desc)
			p = &((priv->dma_etx + i)->basic);
		else
			p = priv->dma_tx + i;
		p->des2 = 0;
1050
		priv->tx_skbuff_dma[i] = 0;
1051 1052
		priv->tx_skbuff[i] = NULL;
	}
1053

1054 1055 1056
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

1057
	stmmac_clear_descriptors(priv);
1058

1059 1060
	if (netif_msg_hw(priv))
		stmmac_display_rings(priv);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
1083 1084 1085 1086 1087 1088
			struct dma_desc *p;
			if (priv->extend_desc)
				p = &((priv->dma_etx + i)->basic);
			else
				p = priv->dma_tx + i;

1089 1090 1091
			if (priv->tx_skbuff_dma[i])
				dma_unmap_single(priv->device,
						 priv->tx_skbuff_dma[i],
1092 1093
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
1094 1095
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
1096
			priv->tx_skbuff_dma[i] = 0;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (!priv->extend_desc) {
		dma_free_coherent(priv->device,
				  priv->dma_tx_size * sizeof(struct dma_desc),
				  priv->dma_tx, priv->dma_tx_phy);
		dma_free_coherent(priv->device,
				  priv->dma_rx_size * sizeof(struct dma_desc),
				  priv->dma_rx, priv->dma_rx_phy);
	} else {
		dma_free_coherent(priv->device, priv->dma_tx_size *
				  sizeof(struct dma_extended_desc),
				  priv->dma_etx, priv->dma_tx_phy);
		dma_free_coherent(priv->device, priv->dma_rx_size *
				  sizeof(struct dma_extended_desc),
				  priv->dma_erx, priv->dma_rx_phy);
	}
1124 1125
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
1126
	kfree(priv->tx_skbuff_dma);
1127 1128 1129 1130 1131 1132 1133
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1134
 *  or Store-And-Forward capability.
1135 1136 1137
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
1138 1139 1140 1141 1142
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
1143 1144 1145 1146 1147 1148 1149 1150 1151
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1152 1153 1154
}

/**
1155 1156
 * stmmac_tx_clean:
 * @priv: private data pointer
1157 1158
 * Description: it reclaims resources after transmission completes.
 */
1159
static void stmmac_tx_clean(struct stmmac_priv *priv)
1160 1161 1162
{
	unsigned int txsize = priv->dma_tx_size;

1163 1164
	spin_lock(&priv->tx_lock);

1165 1166
	priv->xstats.tx_clean++;

1167 1168 1169 1170
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
1171 1172 1173 1174 1175 1176
		struct dma_desc *p;

		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_etx + entry);
		else
			p = priv->dma_tx + entry;
1177 1178

		/* Check if the descriptor is owned by the DMA. */
1179
		if (priv->hw->desc->get_tx_owner(p))
1180 1181
			break;

1182
		/* Verify tx error by looking at the last segment. */
1183
		last = priv->hw->desc->get_tx_ls(p);
1184 1185
		if (likely(last)) {
			int tx_error =
1186 1187
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
1188
							  priv->ioaddr);
1189 1190 1191 1192 1193
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
1194 1195

			stmmac_get_tx_hwtstamp(priv, entry, skb);
1196 1197 1198 1199
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

1200 1201 1202
		if (likely(priv->tx_skbuff_dma[entry])) {
			dma_unmap_single(priv->device,
					 priv->tx_skbuff_dma[entry],
1203
					 priv->hw->desc->get_tx_len(p),
1204
					 DMA_TO_DEVICE);
1205 1206
			priv->tx_skbuff_dma[entry] = 0;
		}
1207
		priv->hw->ring->clean_desc3(priv, p);
1208 1209

		if (likely(skb != NULL)) {
E
Eric Dumazet 已提交
1210
			dev_kfree_skb(skb);
1211 1212 1213
			priv->tx_skbuff[entry] = NULL;
		}

1214
		priv->hw->desc->release_tx_desc(p, priv->mode);
1215

1216
		priv->dirty_tx++;
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
1228 1229 1230 1231 1232

	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
		stmmac_enable_eee_mode(priv);
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
	}
1233
	spin_unlock(&priv->tx_lock);
1234 1235
}

1236
static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1237
{
1238
	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1239 1240
}

1241
static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1242
{
1243
	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
}


/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
1255 1256
	int i;
	int txsize = priv->dma_tx_size;
1257 1258
	netif_stop_queue(priv->dev);

1259
	priv->hw->dma->stop_tx(priv->ioaddr);
1260
	dma_free_tx_skbufs(priv);
1261 1262 1263 1264 1265 1266 1267 1268 1269
	for (i = 0; i < txsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
						     priv->mode,
						     (i == txsize - 1));
		else
			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
						     priv->mode,
						     (i == txsize - 1));
1270 1271
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
1272
	priv->hw->dma->start_tx(priv->ioaddr);
1273 1274 1275 1276 1277

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}

1278 1279 1280 1281
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

1282
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1283 1284 1285 1286 1287 1288 1289
	if (likely((status & handle_rx)) || (status & handle_tx)) {
		if (likely(napi_schedule_prep(&priv->napi))) {
			stmmac_disable_dma_irq(priv);
			__napi_schedule(&priv->napi);
		}
	}
	if (unlikely(status & tx_hard_error_bump_tc)) {
1290 1291 1292
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
1293
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1294
			priv->xstats.threshold = tc;
1295
		}
1296 1297
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
1298 1299
}

1300 1301 1302 1303 1304
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
1305 1306
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
1307
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
1308 1309 1310 1311 1312

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
1313
		pr_info(" No MAC Management Counters available\n");
1314 1315
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

1326
		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1327 1328 1329 1330 1331 1332
			uid, synid);

		return synid;
	}
	return 0;
}
1333

1334 1335
/**
 * stmmac_selec_desc_mode
1336 1337 1338
 * @priv : private structure
 * Description: select the Enhanced/Alternate or Normal descriptors
 */
1339 1340 1341 1342
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
1343 1344 1345 1346 1347 1348 1349 1350

		/* GMAC older than 3.50 has no extended descriptors */
		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
			pr_info("\tEnabled extended descriptors\n");
			priv->extend_desc = 1;
		} else
			pr_warn("Extended descriptors not supported\n");

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
1366 1367 1368
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
1369
	u32 hw_cap = 0;
1370

1371 1372
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1386
		/* MMC */
1387
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1388
		/* IEEE 1588-2002*/
1389 1390
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1391
		/* IEEE 1588-2008*/
1392 1393
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1394
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1395 1396
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1397
		/* TX and RX csum */
1398 1399 1400 1401 1402 1403 1404
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1405
		/* TX and RX number of channels */
1406 1407 1408 1409
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1410
		/* Alternate (enhanced) DESC mode*/
1411 1412
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1413
	}
1414 1415 1416 1417

	return hw_cap;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	/* verify if the MAC address is valid, in case of failures it
	 * generates a random MAC address */
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
1427
			eth_hw_addr_random(priv->dev);
1428 1429 1430 1431 1432
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

1433 1434 1435
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1436
	int mixed_burst = 0;
1437
	int atds = 0;
1438 1439 1440 1441 1442 1443 1444

	/* Some DMA parameters can be passed from the platform;
	 * in case of these are not passed we keep a default
	 * (good for all the chips) and init the DMA! */
	if (priv->plat->dma_cfg) {
		pbl = priv->plat->dma_cfg->pbl;
		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1445
		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1446 1447 1448
		burst_len = priv->plat->dma_cfg->burst_len;
	}

1449 1450 1451
	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
		atds = 1;

1452
	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1453
				   burst_len, priv->dma_tx_phy,
1454
				   priv->dma_rx_phy, atds);
1455 1456
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/**
 * stmmac_tx_timer:
 * @data: data pointer
 * Description:
 * This is the timer handler to directly invoke the stmmac_tx_clean.
 */
static void stmmac_tx_timer(unsigned long data)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)data;

	stmmac_tx_clean(priv);
}

/**
 * stmmac_tx_timer:
 * @priv: private data structure
 * Description:
 * This inits the transmit coalesce parameters: i.e. timer rate,
 * timer handler and default threshold used for enabling the
 * interrupt on completion bit.
 */
static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
{
	priv->tx_coal_frames = STMMAC_TX_FRAMES;
	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
	init_timer(&priv->txtimer);
	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
	priv->txtimer.data = (unsigned long)priv;
	priv->txtimer.function = stmmac_tx_timer;
	add_timer(&priv->txtimer);
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

1503
	clk_prepare_enable(priv->stmmac_clk);
1504 1505 1506

	stmmac_check_ether_addr(priv);

1507 1508 1509 1510 1511 1512 1513
	if (!priv->pcs) {
		ret = stmmac_init_phy(dev);
		if (ret) {
			pr_err("%s: Cannot attach to PHY (error: %d)\n",
			       __func__, ret);
			goto open_error;
		}
1514
	}
1515 1516 1517 1518 1519 1520 1521 1522

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1523
	ret = stmmac_init_dma_engine(priv);
1524
	if (ret < 0) {
1525
		pr_err("%s: DMA initialization failed\n", __func__);
1526
		goto open_error;
1527 1528 1529
	}

	/* Copy the MAC addr into the HW  */
1530
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1531

1532
	/* If required, perform hw setup of the bus. */
1533 1534
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1535

1536
	/* Initialize the MAC Core */
1537
	priv->hw->mac->core_init(priv->ioaddr);
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	/* Request the Wake IRQ in case of another line is used for WoL */
	if (priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
			goto open_error_wolirq;
		}
	}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	/* Request the IRQ lines */
	if (priv->lpi_irq != -ENXIO) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
				  dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
			       __func__, priv->lpi_irq, ret);
			goto open_error_lpiirq;
		}
	}

1570
	/* Enable the MAC Rx/Tx */
1571
	stmmac_set_mac(priv->ioaddr, true);
1572 1573 1574 1575 1576 1577 1578 1579

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1580
	stmmac_mmc_setup(priv);
1581

1582 1583 1584
	ret = stmmac_init_ptp(priv);
	if (ret)
		pr_warn("%s: failed PTP initialisation\n", __func__);
1585

1586 1587 1588
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
1589
		pr_warning("%s: failed debugFS registration\n", __func__);
1590
#endif
1591 1592
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1593 1594
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1595 1596 1597

	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1598 1599
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1600 1601 1602 1603 1604
	}

	if (priv->phydev)
		phy_start(priv->phydev);

1605
	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1606 1607 1608 1609 1610 1611

	/* Using PCS we cannot dial with the phy registers at this stage
	 * so we do not support extra feature like EEE.
	 */
	if (!priv->pcs)
		priv->eee_enabled = stmmac_eee_init(priv);
1612

1613 1614
	stmmac_init_tx_coalesce(priv);

1615 1616 1617 1618 1619
	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
		priv->rx_riwt = MAX_DMA_RIWT;
		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
	}

1620 1621 1622
	if (priv->pcs && priv->hw->mac->ctrl_ane)
		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);

1623 1624
	napi_enable(&priv->napi);
	netif_start_queue(dev);
1625

1626
	return 0;
1627

1628 1629 1630 1631
open_error_lpiirq:
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);

1632 1633 1634
open_error_wolirq:
	free_irq(dev->irq, dev);

1635 1636 1637 1638
open_error:
	if (priv->phydev)
		phy_disconnect(priv->phydev);

1639
	clk_disable_unprepare(priv->stmmac_clk);
1640

1641
	return ret;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

1654 1655 1656
	if (priv->eee_enabled)
		del_timer_sync(&priv->eee_ctrl_timer);

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

	napi_disable(&priv->napi);

1668 1669
	del_timer_sync(&priv->txtimer);

1670 1671
	/* Free the IRQ lines */
	free_irq(dev->irq, dev);
1672 1673
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);
1674 1675
	if (priv->lpi_irq != -ENXIO)
		free_irq(priv->lpi_irq, dev);
1676 1677

	/* Stop TX/RX DMA and clear the descriptors */
1678 1679
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1680 1681 1682 1683

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1684
	/* Disable the MAC Rx/Tx */
1685
	stmmac_set_mac(priv->ioaddr, false);
1686 1687 1688

	netif_carrier_off(dev);

1689 1690 1691
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
1692
	clk_disable_unprepare(priv->stmmac_clk);
1693

1694 1695
	stmmac_release_ptp(priv);

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
1710
	int i, csum_insertion = 0, is_jumbo = 0;
1711 1712
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1713
	unsigned int nopaged_len = skb_headlen(skb);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1725 1726
	spin_lock(&priv->tx_lock);

1727 1728 1729
	if (priv->tx_path_in_lpi_mode)
		stmmac_disable_eee_mode(priv);

1730 1731 1732 1733
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1734 1735 1736 1737 1738 1739 1740
		pr_debug("stmmac xmit: [entry %d]\n"
			 "\tskb addr %p - len: %d - nopaged_len: %d\n"
			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
			 "\ttx_count_frames %d\n", entry,
			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
			 !skb_is_gso(skb) ? "isn't" : "is",
			 priv->tx_count_frames);
1741 1742
#endif

1743
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1744

1745 1746 1747 1748 1749
	if (priv->extend_desc)
		desc = (struct dma_desc *) (priv->dma_etx + entry);
	else
		desc = priv->dma_tx + entry;

1750 1751 1752 1753
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1754 1755 1756
		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
			 "\t\tn_frags: %d, ip_summed: %d\n",
			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1757 1758
#endif
	priv->tx_skbuff[entry] = skb;
1759

1760 1761 1762 1763 1764 1765 1766
	/* To program the descriptors according to the size of the frame */
	if (priv->mode == STMMAC_RING_MODE) {
		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
							priv->plat->enh_desc);
		if (unlikely(is_jumbo))
			entry = priv->hw->ring->jumbo_frm(priv, skb,
							  csum_insertion);
1767
	} else {
1768 1769 1770 1771 1772 1773 1774
		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
							priv->plat->enh_desc);
		if (unlikely(is_jumbo))
			entry = priv->hw->chain->jumbo_frm(priv, skb,
							   csum_insertion);
	}
	if (likely(!is_jumbo)) {
1775 1776
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1777
		priv->tx_skbuff_dma[entry] = desc->des2;
1778
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1779 1780
						csum_insertion, priv->mode);
	} else
1781
		desc = first;
1782 1783

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1784 1785
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1786 1787

		entry = (++priv->cur_tx) % txsize;
1788 1789 1790 1791
		if (priv->extend_desc)
			desc = (struct dma_desc *) (priv->dma_etx + entry);
		else
			desc = priv->dma_tx + entry;
1792 1793

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1794 1795
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1796
		priv->tx_skbuff_dma[entry] = desc->des2;
1797
		priv->tx_skbuff[entry] = NULL;
1798 1799
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
						priv->mode);
1800
		wmb();
1801
		priv->hw->desc->set_tx_owner(desc);
1802
		wmb();
1803 1804
	}

1805
	/* Finalize the latest segment. */
1806
	priv->hw->desc->close_tx_desc(desc);
1807

1808
	wmb();
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	/* According to the coalesce parameter the IC bit for the latest
	 * segment could be reset and the timer re-started to invoke the
	 * stmmac_tx function. This approach takes care about the fragments.
	 */
	priv->tx_count_frames += nfrags + 1;
	if (priv->tx_coal_frames > priv->tx_count_frames) {
		priv->hw->desc->clear_tx_ic(desc);
		priv->xstats.tx_reset_ic_bit++;
		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
		       priv->tx_count_frames);
		mod_timer(&priv->txtimer,
			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
	} else
		priv->tx_count_frames = 0;
1823

1824
	/* To avoid raise condition */
1825
	priv->hw->desc->set_tx_owner(first);
1826
	wmb();
1827 1828 1829 1830 1831 1832 1833 1834 1835

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
1836 1837 1838 1839 1840
		if (priv->extend_desc)
			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
		else
			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1852 1853 1854 1855 1856 1857 1858 1859 1860
	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     priv->hwts_tx_en)) {
		/* declare that device is doing timestamping */
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		priv->hw->desc->enable_tx_timestamp(first);
	}

	if (!priv->hwts_tx_en)
		skb_tx_timestamp(skb);
1861

1862 1863
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1864 1865
	spin_unlock(&priv->tx_lock);

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
1876 1877 1878 1879 1880 1881 1882
		struct dma_desc *p;

		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_erx + entry);
		else
			p = priv->dma_rx + entry;

1883 1884 1885
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

E
Eric Dumazet 已提交
1886
			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1887 1888 1889 1890 1891 1892 1893 1894 1895

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

1896
			p->des2 = priv->rx_skbuff_dma[entry];
1897

1898
			priv->hw->ring->refill_desc3(priv, p);
1899

1900 1901
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1902
		wmb();
1903
		priv->hw->desc->set_rx_owner(p);
1904
		wmb();
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1918 1919 1920 1921
		if (priv->extend_desc)
			stmmac_display_ring((void *) priv->dma_erx, rxsize, 1);
		else
			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
1922 1923
	}
#endif
1924
	while (count < limit) {
1925
		int status;
1926
		struct dma_desc *p, *p_next;
1927

1928 1929 1930 1931 1932 1933
		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_erx + entry);
		else
			p = priv->dma_rx + entry ;

		if (priv->hw->desc->get_rx_owner(p))
1934 1935 1936 1937 1938
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
1939 1940 1941 1942 1943 1944
		if (priv->extend_desc)
			p_next = (struct dma_desc *) (priv->dma_erx +
						      next_entry);
		else
			p_next = priv->dma_rx + next_entry;

1945 1946 1947
		prefetch(p_next);

		/* read the status of the incoming frame */
1948 1949 1950 1951 1952 1953 1954
		status = priv->hw->desc->rx_status(&priv->dev->stats,
						   &priv->xstats, p);
		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
			priv->hw->desc->rx_extended_status(&priv->dev->stats,
							   &priv->xstats,
							   priv->dma_erx +
							   entry);
1955
		if (unlikely(status == discard_frame)) {
1956
			priv->dev->stats.rx_errors++;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
			if (priv->hwts_rx_en && !priv->extend_desc) {
				/* DESC2 & DESC3 will be overwitten by device
				 * with timestamp value, hence reinitialize
				 * them in stmmac_rx_refill() function so that
				 * device can reuse it.
				 */
				priv->rx_skbuff[entry] = NULL;
				dma_unmap_single(priv->device,
					priv->rx_skbuff_dma[entry],
					priv->dma_buf_sz, DMA_FROM_DEVICE);
			}
		} else {
1969
			struct sk_buff *skb;
1970
			int frame_len;
1971

1972 1973
			frame_len = priv->hw->desc->get_rx_frame_len(p,
					priv->plat->rx_coe);
1974 1975 1976 1977
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

1997 1998
			stmmac_get_rx_hwtstamp(priv, entry, skb);

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

2011
			if (unlikely(!priv->plat->rx_coe))
2012
				skb_checksum_none_assert(skb);
2013
			else
2014
				skb->ip_summed = CHECKSUM_UNNECESSARY;
2015 2016

			napi_gro_receive(&priv->napi, skb);
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
2037
 *  To look at the incoming frames and clear the tx resources.
2038 2039 2040 2041 2042 2043
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

2044 2045
	priv->xstats.napi_poll++;
	stmmac_tx_clean(priv);
2046

2047
	work_done = stmmac_rx(priv, budget);
2048 2049
	if (work_done < budget) {
		napi_complete(napi);
2050
		stmmac_enable_dma_irq(priv);
2051 2052 2053 2054 2055 2056 2057 2058
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
2059
 *   complete within a reasonable time. The driver will mark the error in the
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
2095
 *  stmmac_set_rx_mode - entry point for multicast addressing
2096 2097 2098 2099 2100 2101 2102
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
2103
static void stmmac_set_rx_mode(struct net_device *dev)
2104 2105 2106 2107
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
2108
	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

2133
	if (priv->plat->enh_desc)
2134 2135
		max_mtu = JUMBO_LEN;
	else
2136
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2137 2138 2139 2140 2141 2142

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

2143 2144 2145 2146 2147 2148
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

2149 2150
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
2151 2152 2153
{
	struct stmmac_priv *priv = netdev_priv(dev);

2154
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2155
		features &= ~NETIF_F_RXCSUM;
2156 2157
	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
		features &= ~NETIF_F_IPV6_CSUM;
2158 2159 2160
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

2161 2162 2163 2164
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
2165 2166
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
2167

2168
	return features;
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

2181 2182 2183
	/* To handle GMAC own interrupts */
	if (priv->plat->has_gmac) {
		int status = priv->hw->mac->host_irq_status((void __iomem *)
2184 2185
							    dev->base_addr,
							    &priv->xstats);
2186 2187
		if (unlikely(status)) {
			/* For LPI we need to save the tx status */
2188
			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2189
				priv->tx_path_in_lpi_mode = true;
2190
			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2191 2192 2193
				priv->tx_path_in_lpi_mode = false;
		}
	}
2194

2195
	/* To handle DMA interrupts */
2196
	stmmac_dma_interrupt(priv);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
2219
 *  Currently it supports just the phy_mii_ioctl(...) and HW time stamping.
2220 2221 2222 2223
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
2224
	int ret = -EOPNOTSUPP;
2225 2226 2227 2228

	if (!netif_running(dev))
		return -EINVAL;

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (!priv->phydev)
			return -EINVAL;
		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
		break;
	case SIOCSHWTSTAMP:
		ret = stmmac_hwtstamp_ioctl(dev, rq);
		break;
	default:
		break;
	}
2243

2244 2245 2246
	return ret;
}

2247 2248 2249
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
2250
static struct dentry *stmmac_dma_cap;
2251

2252 2253
static void sysfs_display_ring(void *head, int size, int extend_desc,
				struct seq_file *seq)
2254 2255
{
	int i;
2256 2257
	struct dma_extended_desc *ep = (struct dma_extended_desc *) head;
	struct dma_desc *p = (struct dma_desc *) head;
2258

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	for (i = 0; i < size; i++) {
		u64 x;
		if (extend_desc) {
			x = *(u64 *) ep;
			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, (unsigned int) virt_to_phys(ep),
				   (unsigned int) x, (unsigned int) (x >> 32),
				   ep->basic.des2, ep->basic.des3);
			ep++;
		} else {
			x = *(u64 *) p;
			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, (unsigned int) virt_to_phys(ep),
				   (unsigned int) x, (unsigned int) (x >> 32),
				   p->des2, p->des3);
			p++;
		}
2276 2277
		seq_printf(seq, "\n");
	}
2278
}
2279

2280 2281 2282 2283 2284 2285
static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	if (priv->extend_desc) {
		seq_printf(seq, "Extended RX descriptor ring:\n");
		sysfs_display_ring((void *) priv->dma_erx, rxsize, 1, seq);
		seq_printf(seq, "Extended TX descriptor ring:\n");
		sysfs_display_ring((void *) priv->dma_etx, txsize, 1, seq);
	} else {
		seq_printf(seq, "RX descriptor ring:\n");
		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
		seq_printf(seq, "TX descriptor ring:\n");
		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
2312
	.release = single_release,
2313 2314
};

2315 2316 2317 2318 2319
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

2320
	if (!priv->hw_cap_support) {
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
2384
	.release = single_release,
2385 2386
};

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

2423 2424 2425 2426 2427 2428
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
2429
	debugfs_remove(stmmac_dma_cap);
2430 2431 2432 2433
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

2434 2435 2436 2437 2438
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
2439
	.ndo_fix_features = stmmac_fix_features,
2440
	.ndo_set_rx_mode = stmmac_set_rx_mode,
2441 2442 2443 2444 2445 2446 2447 2448 2449
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
/**
 *  stmmac_hw_init - Init the MAC device
 *  @priv : pointer to the private device structure.
 *  Description: this function detects which MAC device
 *  (GMAC/MAC10-100) has to attached, checks the HW capability
 *  (if supported) and sets the driver's features (for example
 *  to use the ring or chaine mode or support the normal/enh
 *  descriptor structure).
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
2461
	int ret;
2462 2463 2464
	struct mac_device_info *mac;

	/* Identify the MAC HW device */
2465 2466
	if (priv->plat->has_gmac) {
		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2467
		mac = dwmac1000_setup(priv->ioaddr);
2468
	} else {
2469
		mac = dwmac100_setup(priv->ioaddr);
2470
	}
2471 2472 2473 2474 2475 2476
	if (!mac)
		return -ENOMEM;

	priv->hw = mac;

	/* Get and dump the chip ID */
2477
	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2478

2479 2480 2481
	/* To use alternate (extended) or normal descriptor structures */
	stmmac_selec_desc_mode(priv);

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/* To use the chained or ring mode */
	if (chain_mode)	{
		priv->hw->chain = &chain_mode_ops;
		pr_info(" Chain mode enabled\n");
		priv->mode = STMMAC_CHAIN_MODE;
	} else {
		priv->hw->ring = &ring_mode_ops;
		pr_info(" Ring mode enabled\n");
		priv->mode = STMMAC_RING_MODE;
	}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
		pr_info(" DMA HW capability register supported");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2505 2506 2507 2508 2509 2510 2511 2512

		priv->plat->tx_coe = priv->dma_cap.tx_coe;

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

2513 2514 2515
	} else
		pr_info(" No HW DMA feature register supported");

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	/* Enable the IPC (Checksum Offload) and check if the feature has been
	 * enabled during the core configuration. */
	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
	if (!ret) {
		pr_warning(" RX IPC Checksum Offload not configured.\n");
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
	}

	if (priv->plat->rx_coe)
		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
			priv->plat->rx_coe);
2527 2528 2529 2530 2531 2532 2533 2534
	if (priv->plat->tx_coe)
		pr_info(" TX Checksum insertion supported\n");

	if (priv->plat->pmt) {
		pr_info(" Wake-Up On Lan supported\n");
		device_set_wakeup_capable(priv->device, 1);
	}

2535
	return 0;
2536 2537
}

2538
/**
2539 2540
 * stmmac_dvr_probe
 * @device: device pointer
2541 2542
 * @plat_dat: platform data pointer
 * @addr: iobase memory address
2543 2544
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
2545
 */
2546
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2547 2548
				     struct plat_stmmacenet_data *plat_dat,
				     void __iomem *addr)
2549 2550
{
	int ret = 0;
2551 2552
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
2553

2554
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2555
	if (!ndev)
2556 2557 2558 2559 2560 2561 2562
		return NULL;

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
2563

2564
	ether_setup(ndev);
2565

2566
	stmmac_set_ethtool_ops(ndev);
2567 2568 2569 2570 2571 2572 2573
	priv->pause = pause;
	priv->plat = plat_dat;
	priv->ioaddr = addr;
	priv->dev->base_addr = (unsigned long)addr;

	/* Verify driver arguments */
	stmmac_verify_args();
2574

2575 2576 2577 2578 2579 2580
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* Init MAC and get the capabilities */
2581 2582 2583
	ret = stmmac_hw_init(priv);
	if (ret)
		goto error_free_netdev;
2584 2585

	ndev->netdev_ops = &stmmac_netdev_ops;
2586

2587 2588
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
2589 2590
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2591 2592
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
2593
	ndev->features |= NETIF_F_HW_VLAN_RX;
2594 2595 2596 2597 2598 2599
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	/* Rx Watchdog is available in the COREs newer than the 3.40.
	 * In some case, for example on bugged HW this feature
	 * has to be disable and this can be done by passing the
	 * riwt_off field from the platform.
	 */
	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
		priv->use_riwt = 1;
		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
	}

2610
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2611

2612
	spin_lock_init(&priv->lock);
2613
	spin_lock_init(&priv->tx_lock);
2614

2615
	ret = register_netdev(ndev);
2616
	if (ret) {
2617
		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2618
		goto error_netdev_register;
2619 2620
	}

2621
	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2622
	if (IS_ERR(priv->stmmac_clk)) {
2623
		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2624 2625
		goto error_clk_get;
	}
2626

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
	if (!priv->plat->clk_csr)
		stmmac_clk_csr_set(priv);
	else
		priv->clk_csr = priv->plat->clk_csr;

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	stmmac_check_pcs_mode(priv);

	if (!priv->pcs) {
		/* MDIO bus Registration */
		ret = stmmac_mdio_register(ndev);
		if (ret < 0) {
			pr_debug("%s: MDIO bus (id: %d) registration failed",
				 __func__, priv->plat->bus_id);
			goto error_mdio_register;
		}
2648 2649
	}

2650
	return priv;
2651

2652 2653 2654
error_mdio_register:
	clk_put(priv->stmmac_clk);
error_clk_get:
2655
	unregister_netdev(ndev);
2656 2657
error_netdev_register:
	netif_napi_del(&priv->napi);
2658
error_free_netdev:
2659
	free_netdev(ndev);
2660

2661
	return NULL;
2662 2663 2664 2665
}

/**
 * stmmac_dvr_remove
2666
 * @ndev: net device pointer
2667
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2668
 * changes the link status, releases the DMA descriptor rings.
2669
 */
2670
int stmmac_dvr_remove(struct net_device *ndev)
2671
{
2672
	struct stmmac_priv *priv = netdev_priv(ndev);
2673 2674 2675

	pr_info("%s:\n\tremoving driver", __func__);

2676 2677
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
2678

2679
	stmmac_set_mac(priv->ioaddr, false);
2680 2681
	if (!priv->pcs)
		stmmac_mdio_unregister(ndev);
2682 2683 2684 2685 2686 2687 2688 2689
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2690
int stmmac_suspend(struct net_device *ndev)
2691
{
2692
	struct stmmac_priv *priv = netdev_priv(ndev);
2693
	unsigned long flags;
2694

2695
	if (!ndev || !netif_running(ndev))
2696 2697
		return 0;

2698 2699 2700
	if (priv->phydev)
		phy_stop(priv->phydev);

2701
	spin_lock_irqsave(&priv->lock, flags);
2702

2703 2704
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2705

2706 2707 2708 2709 2710
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
2711 2712

	stmmac_clear_descriptors(priv);
2713 2714 2715 2716

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2717
	else {
2718
		stmmac_set_mac(priv->ioaddr, false);
2719
		/* Disable clock in case of PWM is off */
2720
		clk_disable_unprepare(priv->stmmac_clk);
2721
	}
2722
	spin_unlock_irqrestore(&priv->lock, flags);
2723 2724 2725
	return 0;
}

2726
int stmmac_resume(struct net_device *ndev)
2727
{
2728
	struct stmmac_priv *priv = netdev_priv(ndev);
2729
	unsigned long flags;
2730

2731
	if (!netif_running(ndev))
2732 2733
		return 0;

2734
	spin_lock_irqsave(&priv->lock, flags);
2735

2736 2737 2738 2739 2740
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2741
	if (device_may_wakeup(priv->device))
2742
		priv->hw->mac->pmt(priv->ioaddr, 0);
2743 2744
	else
		/* enable the clk prevously disabled */
2745
		clk_prepare_enable(priv->stmmac_clk);
2746

2747
	netif_device_attach(ndev);
2748 2749

	/* Enable the MAC and DMA */
2750
	stmmac_set_mac(priv->ioaddr, true);
2751 2752
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2753 2754 2755

	napi_enable(&priv->napi);

2756
	netif_start_queue(ndev);
2757

2758
	spin_unlock_irqrestore(&priv->lock, flags);
2759 2760 2761 2762

	if (priv->phydev)
		phy_start(priv->phydev);

2763 2764 2765
	return 0;
}

2766
int stmmac_freeze(struct net_device *ndev)
2767 2768 2769 2770 2771 2772 2773
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

2774
int stmmac_restore(struct net_device *ndev)
2775 2776 2777 2778 2779 2780 2781
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
2782

2783 2784 2785
/* Driver can be configured w/ and w/ both PCI and Platf drivers
 * depending on the configuration selected.
 */
2786 2787
static int __init stmmac_init(void)
{
2788
	int ret;
2789

2790 2791 2792 2793 2794 2795
	ret = stmmac_register_platform();
	if (ret)
		goto err;
	ret = stmmac_register_pci();
	if (ret)
		goto err_pci;
2796
	return 0;
2797 2798 2799 2800 2801
err_pci:
	stmmac_unregister_platform();
err:
	pr_err("stmmac: driver registration failed\n");
	return ret;
2802 2803 2804 2805
}

static void __exit stmmac_exit(void)
{
2806 2807
	stmmac_unregister_platform();
	stmmac_unregister_pci();
2808 2809 2810 2811 2812
}

module_init(stmmac_init);
module_exit(stmmac_exit);

2813 2814 2815 2816 2817 2818 2819 2820
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2821
		if (!strncmp(opt, "debug:", 6)) {
2822
			if (kstrtoint(opt + 6, 0, &debug))
2823 2824
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
2825
			if (kstrtoint(opt + 8, 0, &phyaddr))
2826 2827
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2828
			if (kstrtoint(opt + 11, 0, &dma_txsize))
2829 2830
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2831
			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2832 2833
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
2834
			if (kstrtoint(opt + 7, 0, &buf_sz))
2835 2836
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
2837
			if (kstrtoint(opt + 3, 0, &tc))
2838 2839
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
2840
			if (kstrtoint(opt + 9, 0, &watchdog))
2841 2842
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2843
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2844 2845
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
2846
			if (kstrtoint(opt + 6, 0, &pause))
2847
				goto err;
2848
		} else if (!strncmp(opt, "eee_timer:", 10)) {
2849 2850
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
2851 2852 2853
		} else if (!strncmp(opt, "chain_mode:", 11)) {
			if (kstrtoint(opt + 11, 0, &chain_mode))
				goto err;
2854
		}
2855 2856
	}
	return 0;
2857 2858 2859 2860

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2861 2862 2863 2864
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2865 2866 2867 2868

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");