stmmac_main.c 57.9 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
47
#include <linux/slab.h>
48
#include <linux/prefetch.h>
49 50 51 52
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
53
#include "stmmac.h"
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

#define STMMAC_RESOURCE_NAME	"stmmaceth"

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
#ifdef STMMAC_TX_DEBUG
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

static int phyaddr = -1;
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

/* Pay attention to tune this parameter; take care of both
 * hardware capability and network stabitily/performance impact.
 * Many tests showed that ~4ms latency seems to be good enough. */
#ifdef CONFIG_STMMAC_TIMER
#define DEFAULT_PERIODIC_RATE	256
static int tmrate = DEFAULT_PERIODIC_RATE;
module_param(tmrate, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
#endif

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
}

#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

189 190 191 192 193 194 195 196 197 198 199 200
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
	if (phydev->link) {
222
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
223 224 225 226 227 228

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
229
				ctrl &= ~priv->hw->link.duplex;
230
			else
231
				ctrl |= priv->hw->link.duplex;
232 233 234 235
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
236
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
237
						 fc, pause_time);
238 239 240 241 242

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
243
				if (likely(priv->plat->has_gmac))
244
					ctrl &= ~priv->hw->link.port;
245
				stmmac_hw_fix_mac_speed(priv);
246 247 248
				break;
			case 100:
			case 10:
249
				if (priv->plat->has_gmac) {
250
					ctrl |= priv->hw->link.port;
251
					if (phydev->speed == SPEED_100) {
252
						ctrl |= priv->hw->link.speed;
253
					} else {
254
						ctrl &= ~(priv->hw->link.speed);
255 256
					}
				} else {
257
					ctrl &= ~priv->hw->link.port;
258
				}
259
				stmmac_hw_fix_mac_speed(priv);
260 261 262 263 264 265 266 267 268 269 270
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

271
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
304 305
	char phy_id[MII_BUS_ID_SIZE + 3];
	char bus_id[MII_BUS_ID_SIZE];
306
	int interface = priv->plat->interface;
307 308 309 310
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

311
	snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->plat->bus_id);
312
	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
313
		 priv->plat->phy_addr);
314 315
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);

316
	phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
317 318 319 320 321 322

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

323 324 325 326 327
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
	if ((interface) && ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))) {
		phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
				      SUPPORTED_Asym_Pause);
328
		phydev->advertising = phydev->supported;
329 330
	}

331 332 333 334 335 336 337 338 339 340 341 342
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
343
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
344 345 346 347 348 349

	priv->phydev = phydev;

	return 0;
}

350
static inline void stmmac_enable_mac(void __iomem *ioaddr)
351 352 353
{
	u32 value = readl(ioaddr + MAC_CTRL_REG);

354
	value |= MAC_RNABLE_RX | MAC_ENABLE_TX;
355 356 357
	writel(value, ioaddr + MAC_CTRL_REG);
}

358
static inline void stmmac_disable_mac(void __iomem *ioaddr)
359 360 361
{
	u32 value = readl(ioaddr + MAC_CTRL_REG);

362
	value &= ~(MAC_ENABLE_TX | MAC_RNABLE_RX);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	writel(value, ioaddr + MAC_CTRL_REG);
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

406 407 408 409
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
410 411
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
412 413 414 415 416 417 418 419
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
420 421 422
	unsigned int bfsize;
	int dis_ic = 0;
	int des3_as_data_buf = 0;
423

424 425 426 427 428 429
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);

	if (bfsize == BUF_SIZE_16KiB)
		des3_as_data_buf = 1;
430
	else
431
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
432

433 434 435 436 437
#ifdef CONFIG_STMMAC_TIMER
	/* Disable interrupts on completion for the reception if timer is on */
	if (likely(priv->tm->enable))
		dis_ic = 1;
#endif
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
	priv->rx_skbuff =
	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
	priv->dma_rx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
				       GFP_KERNEL);
	priv->dma_tx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
		return;
	}

465
	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
466 467 468 469 470 471 472 473 474 475 476
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

477 478
		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
					 GFP_KERNEL);
479 480 481 482
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
483
		skb_reserve(skb, NET_IP_ALIGN);
484 485 486 487 488
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
489 490 491

		priv->hw->ring->init_desc3(des3_as_data_buf, p);

492 493 494 495 496 497 498 499 500 501 502 503 504
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
505 506 507 508 509 510

	/* In case of Chained mode this sets the des3 to the next
	 * element in the chain */
	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);

511 512 513 514
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

	/* Clear the Rx/Tx descriptors */
515 516
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
549 550
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
580
 *  or Store-And-Forward capability.
581 582 583
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
584 585 586 587 588
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
589 590 591 592 593 594 595 596 597
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
598 599 600 601 602 603 604 605 606 607 608
}

/**
 * stmmac_tx:
 * @priv: private driver structure
 * Description: it reclaims resources after transmission completes.
 */
static void stmmac_tx(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;

609 610
	spin_lock(&priv->tx_lock);

611 612 613 614 615 616 617
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
618
		if (priv->hw->desc->get_tx_owner(p))
619 620 621
			break;

		/* Verify tx error by looking at the last segment */
622
		last = priv->hw->desc->get_tx_ls(p);
623 624
		if (likely(last)) {
			int tx_error =
625 626
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
627
							  priv->ioaddr);
628 629 630 631 632 633 634 635 636 637 638
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
639
					 priv->hw->desc->get_tx_len(p),
640
					 DMA_TO_DEVICE);
641
		priv->hw->ring->clean_desc3(p);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

		if (likely(skb != NULL)) {
			/*
			 * If there's room in the queue (limit it to size)
			 * we add this skb back into the pool,
			 * if it's the right size.
			 */
			if ((skb_queue_len(&priv->rx_recycle) <
				priv->dma_rx_size) &&
				skb_recycle_check(skb, priv->dma_buf_sz))
				__skb_queue_head(&priv->rx_recycle, skb);
			else
				dev_kfree_skb(skb);

			priv->tx_skbuff[entry] = NULL;
		}

659
		priv->hw->desc->release_tx_desc(p);
660 661 662 663 664 665 666 667 668 669 670 671 672

		entry = (++priv->dirty_tx) % txsize;
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
673
	spin_unlock(&priv->tx_lock);
674 675 676 677
}

static inline void stmmac_enable_irq(struct stmmac_priv *priv)
{
678 679 680 681
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
	else
682
#endif
683
		priv->hw->dma->enable_dma_irq(priv->ioaddr);
684 685 686 687
}

static inline void stmmac_disable_irq(struct stmmac_priv *priv)
{
688 689 690 691
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_stop();
	else
692
#endif
693
		priv->hw->dma->disable_dma_irq(priv->ioaddr);
694 695 696 697 698 699 700
}

static int stmmac_has_work(struct stmmac_priv *priv)
{
	unsigned int has_work = 0;
	int rxret, tx_work = 0;

701
	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
		(priv->cur_rx % priv->dma_rx_size));

	if (priv->dirty_tx != priv->cur_tx)
		tx_work = 1;

	if (likely(!rxret || tx_work))
		has_work = 1;

	return has_work;
}

static inline void _stmmac_schedule(struct stmmac_priv *priv)
{
	if (likely(stmmac_has_work(priv))) {
		stmmac_disable_irq(priv);
		napi_schedule(&priv->napi);
	}
}

#ifdef CONFIG_STMMAC_TIMER
void stmmac_schedule(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	priv->xstats.sched_timer_n++;

	_stmmac_schedule(priv);
}

static void stmmac_no_timer_started(unsigned int x)
{;
};

static void stmmac_no_timer_stopped(void)
{;
};
#endif

/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

750
	priv->hw->dma->stop_tx(priv->ioaddr);
751
	dma_free_tx_skbufs(priv);
752
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
753 754
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
755
	priv->hw->dma->start_tx(priv->ioaddr);
756 757 758 759 760 761

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}


762 763 764 765
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

766
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
767 768 769 770 771 772 773
	if (likely(status == handle_tx_rx))
		_stmmac_schedule(priv);

	else if (unlikely(status == tx_hard_error_bump_tc)) {
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
774
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
775
			priv->xstats.threshold = tc;
776
		}
777 778
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
779 780
}

781 782 783 784 785 786 787 788 789 790 791
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

	/* Do not manage MMC IRQ (FIXME) */
	dwmac_mmc_intr_all_mask(priv->ioaddr);
	dwmac_mmc_ctrl(priv->ioaddr, mode);
	memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

		pr_info("STMMAC - user ID: 0x%x, Synopsys ID: 0x%x\n",
			uid, synid);

		return synid;
	}
	return 0;
}
809 810 811 812 813 814

/* New GMAC chips support a new register to indicate the
 * presence of the optional feature/functions.
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
815
	u32 hw_cap = 0;
816

817 818
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
		/*MMC*/
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
834
		/* IEEE 1588-2002*/
835 836
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
837
		/* IEEE 1588-2008*/
838 839
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
840
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
841 842
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
843
		/* TX and RX csum */
844 845 846 847 848 849 850
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
851
		/* TX and RX number of channels */
852 853 854 855
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
856
		/* Alternate (enhanced) DESC mode*/
857 858
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
859 860 861 862 863 864 865

	} else
		pr_debug("\tNo HW DMA feature register supported");

	return hw_cap;
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

	/* Check that the MAC address is valid.  If its not, refuse
	 * to bring the device up. The user must specify an
	 * address using the following linux command:
	 *      ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx  */
	if (!is_valid_ether_addr(dev->dev_addr)) {
		random_ether_addr(dev->dev_addr);
		pr_warning("%s: generated random MAC address %pM\n", dev->name,
			dev->dev_addr);
	}

	stmmac_verify_args();

#ifdef CONFIG_STMMAC_TIMER
893
	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
894
	if (unlikely(priv->tm == NULL)) {
895
		pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
896 897 898 899
		return -ENOMEM;
	}
	priv->tm->freq = tmrate;

900 901
	/* Test if the external timer can be actually used.
	 * In case of failure continue without timer. */
902
	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
903
		pr_warning("stmmaceth: cannot attach the external timer.\n");
904 905 906
		priv->tm->freq = 0;
		priv->tm->timer_start = stmmac_no_timer_started;
		priv->tm->timer_stop = stmmac_no_timer_stopped;
907 908
	} else
		priv->tm->enable = 1;
909
#endif
910 911 912 913 914
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
915 916 917 918 919 920 921 922

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
923 924 925
	ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
				  priv->dma_tx_phy, priv->dma_rx_phy);
	if (ret < 0) {
926
		pr_err("%s: DMA initialization failed\n", __func__);
927
		goto open_error;
928 929 930
	}

	/* Copy the MAC addr into the HW  */
931
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
932
	/* If required, perform hw setup of the bus. */
933 934
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
935
	/* Initialize the MAC Core */
936
	priv->hw->mac->core_init(priv->ioaddr);
937

938 939
	stmmac_get_synopsys_id(priv);

940 941
	stmmac_get_hw_features(priv);

942
	priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
943 944
	if (priv->rx_coe)
		pr_info("stmmac: Rx Checksum Offload Engine supported\n");
945
	if (priv->plat->tx_coe)
946
		pr_info("\tTX Checksum insertion supported\n");
947
	netdev_update_features(dev);
948

949 950 951 952 953 954 955 956 957
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

958
	/* Enable the MAC Rx/Tx */
959
	stmmac_enable_mac(priv->ioaddr);
960 961 962 963 964 965 966 967

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

968 969
	if (priv->dma_cap.rmon)
		stmmac_mmc_setup(priv);
970

971 972
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
973 974
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
975 976 977 978 979 980

#ifdef CONFIG_STMMAC_TIMER
	priv->tm->timer_start(tmrate);
#endif
	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
981 982
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
983 984 985 986 987 988 989 990
	}

	if (priv->phydev)
		phy_start(priv->phydev);

	napi_enable(&priv->napi);
	skb_queue_head_init(&priv->rx_recycle);
	netif_start_queue(dev);
991

992
	return 0;
993 994 995 996 997 998 999 1000 1001

open_error:
#ifdef CONFIG_STMMAC_TIMER
	kfree(priv->tm);
#endif
	if (priv->phydev)
		phy_disconnect(priv->phydev);

	return ret;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

#ifdef CONFIG_STMMAC_TIMER
	/* Stop and release the timer */
	stmmac_close_ext_timer();
	if (priv->tm != NULL)
		kfree(priv->tm);
#endif
	napi_disable(&priv->napi);
	skb_queue_purge(&priv->rx_recycle);

	/* Free the IRQ lines */
	free_irq(dev->irq, dev);

	/* Stop TX/RX DMA and clear the descriptors */
1036 1037
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1038 1039 1040 1041

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1042 1043
	/* Disable the MAC Rx/Tx */
	stmmac_disable_mac(priv->ioaddr);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	netif_carrier_off(dev);

	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
	int i, csum_insertion = 0;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1064
	unsigned int nopaged_len = skb_headlen(skb);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1076 1077
	spin_lock(&priv->tx_lock);

1078 1079 1080 1081 1082 1083 1084
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
		pr_info("stmmac xmit:\n"
		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1085
		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1086 1087 1088
		       !skb_is_gso(skb) ? "isn't" : "is");
#endif

1089
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1090 1091 1092 1093 1094 1095 1096 1097

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
		       "\t\tn_frags: %d, ip_summed: %d\n",
1098
		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1099 1100
#endif
	priv->tx_skbuff[entry] = skb;
1101 1102 1103

	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1104 1105 1106 1107
		desc = priv->dma_tx + entry;
	} else {
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1108 1109
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1110 1111 1112
	}

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1113 1114
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1115 1116 1117 1118 1119

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1120 1121
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1122
		priv->tx_skbuff[entry] = NULL;
1123
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1124
		wmb();
1125
		priv->hw->desc->set_tx_owner(desc);
1126 1127 1128
	}

	/* Interrupt on completition only for the latest segment */
1129
	priv->hw->desc->close_tx_desc(desc);
1130

1131
#ifdef CONFIG_STMMAC_TIMER
1132 1133
	/* Clean IC while using timer */
	if (likely(priv->tm->enable))
1134
		priv->hw->desc->clear_tx_ic(desc);
1135
#endif
1136 1137 1138

	wmb();

1139
	/* To avoid raise condition */
1140
	priv->hw->desc->set_tx_owner(first);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1162 1163
	skb_tx_timestamp(skb);

1164 1165
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1166 1167
	spin_unlock(&priv->tx_lock);

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

			skb = __skb_dequeue(&priv->rx_recycle);
			if (skb == NULL)
				skb = netdev_alloc_skb_ip_align(priv->dev,
								bfsize);

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1196 1197 1198 1199

			if (unlikely(priv->plat->has_gmac))
				priv->hw->ring->refill_desc3(bfsize, p + entry);

1200 1201
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1202
		wmb();
1203
		priv->hw->desc->set_rx_owner(p + entry);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
	count = 0;
1223
	while (!priv->hw->desc->get_rx_owner(p)) {
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1236 1237
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1238 1239 1240 1241
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1242
			int frame_len;
1243

1244 1245 1246 1247 1248
			frame_len = priv->hw->desc->get_rx_frame_len(p);
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1280 1281
			if (unlikely(!priv->rx_coe)) {
				/* No RX COE for old mac10/100 devices */
1282
				skb_checksum_none_assert(skb);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
				netif_receive_skb(skb);
			} else {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				napi_gro_receive(&priv->napi, skb);
			}

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
 *   This function implements the the reception process.
 *   Also it runs the TX completion thread
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

	priv->xstats.poll_n++;
	stmmac_tx(priv);
	work_done = stmmac_rx(priv, budget);

	if (work_done < budget) {
		napi_complete(napi);
		stmmac_enable_irq(priv);
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
 *   complete within a reasonable tmrate. The driver will mark the error in the
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1368
 *  stmmac_set_rx_mode - entry point for multicast addressing
1369 1370 1371 1372 1373 1374 1375
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1376
static void stmmac_set_rx_mode(struct net_device *dev)
1377 1378 1379 1380
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1381
	priv->hw->mac->set_filter(dev);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1406
	if (priv->plat->enh_desc)
1407 1408
		max_mtu = JUMBO_LEN;
	else
1409
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1410 1411 1412 1413 1414 1415

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

static u32 stmmac_fix_features(struct net_device *dev, u32 features)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	if (!priv->rx_coe)
		features &= ~NETIF_F_RXCSUM;
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1431 1432 1433 1434
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1435 1436
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1437

1438
	return features;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1451
	if (priv->plat->has_gmac)
1452
		/* To handle GMAC own interrupts */
1453
		priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1454 1455

	stmmac_dma_interrupt(priv);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1484
	int ret;
1485 1486 1487 1488

	if (!netif_running(dev))
		return -EINVAL;

1489 1490 1491 1492 1493 1494 1495
	if (!priv->phydev)
		return -EINVAL;

	spin_lock(&priv->lock);
	ret = phy_mii_ioctl(priv->phydev, rq, cmd);
	spin_unlock(&priv->lock);

1496 1497 1498
	return ret;
}

1499 1500 1501
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1502
static struct dentry *stmmac_dma_cap;
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	seq_printf(seq, "=======================\n");
	seq_printf(seq, " RX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	seq_printf(seq, "\n");
	seq_printf(seq, "=======================\n");
	seq_printf(seq, "  TX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_tx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = seq_release,
};

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (!stmmac_get_hw_features(priv)) {
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = seq_release,
};

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1664 1665 1666 1667 1668 1669
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
1670
	debugfs_remove(stmmac_dma_cap);
1671 1672 1673 1674
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

1675 1676 1677 1678 1679
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
1680
	.ndo_fix_features = stmmac_fix_features,
1681
	.ndo_set_rx_mode = stmmac_set_rx_mode,
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

/**
 * stmmac_probe - Initialization of the adapter .
 * @dev : device pointer
 * Description: The function initializes the network device structure for
 * the STMMAC driver. It also calls the low level routines
 * in order to init the HW (i.e. the DMA engine)
 */
static int stmmac_probe(struct net_device *dev)
{
	int ret = 0;
	struct stmmac_priv *priv = netdev_priv(dev);

	ether_setup(dev);

	dev->netdev_ops = &stmmac_netdev_ops;
	stmmac_set_ethtool_ops(dev);

1708 1709
	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
	dev->features |= NETIF_F_HW_VLAN_RX;
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

	priv->pause = pause;
	netif_napi_add(dev, &priv->napi, stmmac_poll, 64);

	/* Get the MAC address */
1724 1725
	priv->hw->mac->get_umac_addr((void __iomem *) dev->base_addr,
				     dev->dev_addr, 0);
1726 1727 1728 1729 1730

	if (!is_valid_ether_addr(dev->dev_addr))
		pr_warning("\tno valid MAC address;"
			"please, use ifconfig or nwhwconfig!\n");

1731
	spin_lock_init(&priv->lock);
1732
	spin_lock_init(&priv->tx_lock);
1733

1734 1735 1736 1737 1738 1739 1740 1741 1742
	ret = register_netdev(dev);
	if (ret) {
		pr_err("%s: ERROR %i registering the device\n",
		       __func__, ret);
		return -ENODEV;
	}

	DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
	    dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1743
	    (dev->features & NETIF_F_IP_CSUM) ? "on" : "off");
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	return ret;
}

/**
 * stmmac_mac_device_setup
 * @dev : device pointer
 * Description: select and initialise the mac device (mac100 or Gmac).
 */
static int stmmac_mac_device_setup(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	struct mac_device_info *device;

1759 1760
	if (priv->plat->has_gmac) {
		dev->priv_flags |= IFF_UNICAST_FLT;
1761
		device = dwmac1000_setup(priv->ioaddr);
1762
	} else {
1763
		device = dwmac100_setup(priv->ioaddr);
1764
	}
1765

1766 1767 1768
	if (!device)
		return -ENOMEM;

1769
	if (priv->plat->enh_desc) {
1770 1771 1772
		device->desc = &enh_desc_ops;
		pr_info("\tEnhanced descriptor structure\n");
	} else
1773
		device->desc = &ndesc_ops;
1774

1775
	priv->hw = device;
1776
	priv->hw->ring = &ring_mode_ops;
1777

1778
	if (device_can_wakeup(priv->device)) {
1779
		priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
1780
		enable_irq_wake(priv->wol_irq);
1781
	}
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

	return 0;
}

/**
 * stmmac_dvr_probe
 * @pdev: platform device pointer
 * Description: the driver is initialized through platform_device.
 */
static int stmmac_dvr_probe(struct platform_device *pdev)
{
	int ret = 0;
	struct resource *res;
1795
	void __iomem *addr = NULL;
1796
	struct net_device *ndev = NULL;
1797
	struct stmmac_priv *priv = NULL;
1798 1799 1800 1801
	struct plat_stmmacenet_data *plat_dat;

	pr_info("STMMAC driver:\n\tplatform registration... ");
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1802 1803
	if (!res)
		return -ENODEV;
1804
	pr_info("\tdone!\n");
1805

D
Dan Carpenter 已提交
1806
	if (!request_mem_region(res->start, resource_size(res),
1807 1808 1809 1810
				pdev->name)) {
		pr_err("%s: ERROR: memory allocation failed"
		       "cannot get the I/O addr 0x%x\n",
		       __func__, (unsigned int)res->start);
1811
		return -EBUSY;
1812 1813
	}

D
Dan Carpenter 已提交
1814
	addr = ioremap(res->start, resource_size(res));
1815
	if (!addr) {
D
Dan Carpenter 已提交
1816
		pr_err("%s: ERROR: memory mapping failed\n", __func__);
1817
		ret = -ENOMEM;
1818
		goto out_release_region;
1819 1820 1821 1822 1823 1824
	}

	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
	if (!ndev) {
		pr_err("%s: ERROR: allocating the device\n", __func__);
		ret = -ENOMEM;
1825
		goto out_unmap;
1826 1827 1828 1829 1830 1831 1832 1833 1834
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);

	/* Get the MAC information */
	ndev->irq = platform_get_irq_byname(pdev, "macirq");
	if (ndev->irq == -ENXIO) {
		pr_err("%s: ERROR: MAC IRQ configuration "
		       "information not found\n", __func__);
1835 1836
		ret = -ENXIO;
		goto out_free_ndev;
1837 1838 1839 1840 1841
	}

	priv = netdev_priv(ndev);
	priv->device = &(pdev->dev);
	priv->dev = ndev;
1842
	plat_dat = pdev->dev.platform_data;
1843 1844 1845

	priv->plat = plat_dat;

1846
	priv->ioaddr = addr;
1847

1848 1849 1850 1851 1852
	/* PMT module is not integrated in all the MAC devices. */
	if (plat_dat->pmt) {
		pr_info("\tPMT module supported\n");
		device_set_wakeup_capable(&pdev->dev, 1);
	}
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	/*
	 * On some platforms e.g. SPEAr the wake up irq differs from the mac irq
	 * The external wake up irq can be passed through the platform code
	 * named as "eth_wake_irq"
	 *
	 * In case the wake up interrupt is not passed from the platform
	 * so the driver will continue to use the mac irq (ndev->irq)
	 */
	priv->wol_irq = platform_get_irq_byname(pdev, "eth_wake_irq");
	if (priv->wol_irq == -ENXIO)
		priv->wol_irq = ndev->irq;

1865

1866 1867 1868 1869 1870
	platform_set_drvdata(pdev, ndev);

	/* Set the I/O base addr */
	ndev->base_addr = (unsigned long)addr;

1871 1872 1873 1874
	/* Custom initialisation */
	if (priv->plat->init) {
		ret = priv->plat->init(pdev);
		if (unlikely(ret))
1875
			goto out_free_ndev;
1876
	}
1877

1878 1879 1880
	/* MAC HW revice detection */
	ret = stmmac_mac_device_setup(ndev);
	if (ret < 0)
1881
		goto out_plat_exit;
1882 1883 1884 1885

	/* Network Device Registration */
	ret = stmmac_probe(ndev);
	if (ret < 0)
1886
		goto out_plat_exit;
1887

1888 1889 1890 1891
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;
1892 1893

	pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
D
David S. Miller 已提交
1894 1895
	       "\tIO base addr: 0x%p)\n", ndev->name, pdev->name,
	       pdev->id, ndev->irq, addr);
1896 1897

	/* MDIO bus Registration */
1898
	pr_debug("\tMDIO bus (id: %d)...", priv->plat->bus_id);
1899 1900
	ret = stmmac_mdio_register(ndev);
	if (ret < 0)
1901
		goto out_unregister;
1902
	pr_debug("registered!\n");
1903 1904 1905 1906 1907 1908 1909

#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(ndev);
	if (ret < 0)
		pr_warning("\tFailed debugFS registration");
#endif

1910
	return 0;
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
out_unregister:
	unregister_netdev(ndev);
out_plat_exit:
	if (priv->plat->exit)
		priv->plat->exit(pdev);
out_free_ndev:
	free_netdev(ndev);
	platform_set_drvdata(pdev, NULL);
out_unmap:
	iounmap(addr);
out_release_region:
	release_mem_region(res->start, resource_size(res));
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

	return ret;
}

/**
 * stmmac_dvr_remove
 * @pdev: platform device pointer
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
 * changes the link status, releases the DMA descriptor rings,
 * unregisters the MDIO bus and unmaps the allocated memory.
 */
static int stmmac_dvr_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
1938
	struct stmmac_priv *priv = netdev_priv(ndev);
1939 1940 1941 1942
	struct resource *res;

	pr_info("%s:\n\tremoving driver", __func__);

1943 1944
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
1945

1946
	stmmac_disable_mac(priv->ioaddr);
1947 1948 1949 1950 1951

	netif_carrier_off(ndev);

	stmmac_mdio_unregister(ndev);

1952 1953 1954
	if (priv->plat->exit)
		priv->plat->exit(pdev);

1955 1956 1957
	platform_set_drvdata(pdev, NULL);
	unregister_netdev(ndev);

1958
	iounmap((void *)priv->ioaddr);
1959
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
D
Dan Carpenter 已提交
1960
	release_mem_region(res->start, resource_size(res));
1961

1962 1963 1964 1965
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif

1966 1967 1968 1969 1970 1971
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
1972
static int stmmac_suspend(struct device *dev)
1973
{
1974 1975
	struct net_device *ndev = dev_get_drvdata(dev);
	struct stmmac_priv *priv = netdev_priv(ndev);
1976 1977
	int dis_ic = 0;

1978
	if (!ndev || !netif_running(ndev))
1979 1980 1981 1982
		return 0;

	spin_lock(&priv->lock);

1983 1984 1985 1986
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
	if (priv->phydev)
		phy_stop(priv->phydev);
1987 1988

#ifdef CONFIG_STMMAC_TIMER
1989 1990 1991
	priv->tm->timer_stop();
	if (likely(priv->tm->enable))
		dis_ic = 1;
1992
#endif
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
	/* Clear the Rx/Tx descriptors */
	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
				     dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
	else
		stmmac_disable_mac(priv->ioaddr);
2008 2009 2010 2011 2012

	spin_unlock(&priv->lock);
	return 0;
}

2013
static int stmmac_resume(struct device *dev)
2014
{
2015 2016
	struct net_device *ndev = dev_get_drvdata(dev);
	struct stmmac_priv *priv = netdev_priv(ndev);
2017

2018
	if (!netif_running(ndev))
2019 2020
		return 0;

2021 2022
	spin_lock(&priv->lock);

2023 2024 2025 2026 2027
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2028
	if (device_may_wakeup(priv->device))
2029
		priv->hw->mac->pmt(priv->ioaddr, 0);
2030

2031
	netif_device_attach(ndev);
2032 2033

	/* Enable the MAC and DMA */
2034
	stmmac_enable_mac(priv->ioaddr);
2035 2036
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2037 2038

#ifdef CONFIG_STMMAC_TIMER
2039 2040
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
2041 2042 2043 2044 2045 2046
#endif
	napi_enable(&priv->napi);

	if (priv->phydev)
		phy_start(priv->phydev);

2047
	netif_start_queue(ndev);
2048 2049 2050 2051 2052

	spin_unlock(&priv->lock);
	return 0;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static int stmmac_freeze(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);

	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

static int stmmac_restore(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);

	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}

static const struct dev_pm_ops stmmac_pm_ops = {
2074 2075
	.suspend = stmmac_suspend,
	.resume = stmmac_resume,
2076 2077 2078 2079 2080 2081 2082
	.freeze = stmmac_freeze,
	.thaw = stmmac_restore,
	.restore = stmmac_restore,
};
#else
static const struct dev_pm_ops stmmac_pm_ops;
#endif /* CONFIG_PM */
2083

2084 2085 2086 2087 2088 2089 2090 2091
static struct platform_driver stmmac_driver = {
	.probe = stmmac_dvr_probe,
	.remove = stmmac_dvr_remove,
	.driver = {
		.name = STMMAC_RESOURCE_NAME,
		.owner = THIS_MODULE,
		.pm = &stmmac_pm_ops,
	},
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
};

/**
 * stmmac_init_module - Entry point for the driver
 * Description: This function is the entry point for the driver.
 */
static int __init stmmac_init_module(void)
{
	int ret;

	ret = platform_driver_register(&stmmac_driver);
	return ret;
}

/**
 * stmmac_cleanup_module - Cleanup routine for the driver
 * Description: This function is the cleanup routine for the driver.
 */
static void __exit stmmac_cleanup_module(void)
{
	platform_driver_unregister(&stmmac_driver);
}

#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		if (!strncmp(opt, "debug:", 6)) {
			if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
			if (strict_strtoul(opt + 8, 0,
					   (unsigned long *)&phyaddr))
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
			if (strict_strtoul(opt + 11, 0,
					   (unsigned long *)&dma_txsize))
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
			if (strict_strtoul(opt + 11, 0,
					   (unsigned long *)&dma_rxsize))
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
			if (strict_strtoul(opt + 7, 0,
					   (unsigned long *)&buf_sz))
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
			if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
			if (strict_strtoul(opt + 9, 0,
					   (unsigned long *)&watchdog))
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
			if (strict_strtoul(opt + 10, 0,
					   (unsigned long *)&flow_ctrl))
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
			if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
				goto err;
2156
#ifdef CONFIG_STMMAC_TIMER
2157 2158 2159 2160
		} else if (!strncmp(opt, "tmrate:", 7)) {
			if (strict_strtoul(opt + 7, 0,
					   (unsigned long *)&tmrate))
				goto err;
2161
#endif
2162
		}
2163 2164
	}
	return 0;
2165 2166 2167 2168

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif

module_init(stmmac_init_module);
module_exit(stmmac_cleanup_module);

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");