stmmac_main.c 58.5 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
47
#include <linux/slab.h>
48
#include <linux/prefetch.h>
49 50 51 52
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
53
#include "stmmac.h"
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

#define STMMAC_RESOURCE_NAME	"stmmaceth"

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
#ifdef STMMAC_TX_DEBUG
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

static int phyaddr = -1;
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

/* Pay attention to tune this parameter; take care of both
 * hardware capability and network stabitily/performance impact.
 * Many tests showed that ~4ms latency seems to be good enough. */
#ifdef CONFIG_STMMAC_TIMER
#define DEFAULT_PERIODIC_RATE	256
static int tmrate = DEFAULT_PERIODIC_RATE;
module_param(tmrate, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
#endif

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
}

#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

189 190 191 192 193 194 195 196 197 198 199 200
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
	if (phydev->link) {
222
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
223 224 225 226 227 228

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
229
				ctrl &= ~priv->hw->link.duplex;
230
			else
231
				ctrl |= priv->hw->link.duplex;
232 233 234 235
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
236
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
237
						 fc, pause_time);
238 239 240 241 242

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
243
				if (likely(priv->plat->has_gmac))
244
					ctrl &= ~priv->hw->link.port;
245
				stmmac_hw_fix_mac_speed(priv);
246 247 248
				break;
			case 100:
			case 10:
249
				if (priv->plat->has_gmac) {
250
					ctrl |= priv->hw->link.port;
251
					if (phydev->speed == SPEED_100) {
252
						ctrl |= priv->hw->link.speed;
253
					} else {
254
						ctrl &= ~(priv->hw->link.speed);
255 256
					}
				} else {
257
					ctrl &= ~priv->hw->link.port;
258
				}
259
				stmmac_hw_fix_mac_speed(priv);
260 261 262 263 264 265 266 267 268 269 270
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

271
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
304 305
	char phy_id[MII_BUS_ID_SIZE + 3];
	char bus_id[MII_BUS_ID_SIZE];
306
	int interface = priv->plat->interface;
307 308 309 310
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

311
	snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->plat->bus_id);
312
	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
313
		 priv->plat->phy_addr);
314 315
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);

316
	phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
317 318 319 320 321 322

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

323
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
324 325 326 327
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
328

329 330 331 332 333 334 335 336 337 338 339 340
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
341
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
342 343 344 345 346 347

	priv->phydev = phydev;

	return 0;
}

348
static inline void stmmac_enable_mac(void __iomem *ioaddr)
349 350 351
{
	u32 value = readl(ioaddr + MAC_CTRL_REG);

352
	value |= MAC_RNABLE_RX | MAC_ENABLE_TX;
353 354 355
	writel(value, ioaddr + MAC_CTRL_REG);
}

356
static inline void stmmac_disable_mac(void __iomem *ioaddr)
357 358 359
{
	u32 value = readl(ioaddr + MAC_CTRL_REG);

360
	value &= ~(MAC_ENABLE_TX | MAC_RNABLE_RX);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	writel(value, ioaddr + MAC_CTRL_REG);
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

404 405 406 407
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
408 409
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
410 411 412 413 414 415 416 417
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
418 419 420
	unsigned int bfsize;
	int dis_ic = 0;
	int des3_as_data_buf = 0;
421

422 423 424 425 426 427
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);

	if (bfsize == BUF_SIZE_16KiB)
		des3_as_data_buf = 1;
428
	else
429
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
430

431 432 433 434 435
#ifdef CONFIG_STMMAC_TIMER
	/* Disable interrupts on completion for the reception if timer is on */
	if (likely(priv->tm->enable))
		dis_ic = 1;
#endif
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
	priv->rx_skbuff =
	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
	priv->dma_rx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
				       GFP_KERNEL);
	priv->dma_tx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
		return;
	}

463
	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
464 465 466 467 468 469 470 471 472 473 474
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

475 476
		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
					 GFP_KERNEL);
477 478 479 480
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
481
		skb_reserve(skb, NET_IP_ALIGN);
482 483 484 485 486
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
487 488 489

		priv->hw->ring->init_desc3(des3_as_data_buf, p);

490 491 492 493 494 495 496 497 498 499 500 501 502
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
503 504 505 506 507 508

	/* In case of Chained mode this sets the des3 to the next
	 * element in the chain */
	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);

509 510 511 512
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

	/* Clear the Rx/Tx descriptors */
513 514
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
547 548
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
578
 *  or Store-And-Forward capability.
579 580 581
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
582 583 584 585 586
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
587 588 589 590 591 592 593 594 595
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
596 597 598 599 600 601 602 603 604 605 606
}

/**
 * stmmac_tx:
 * @priv: private driver structure
 * Description: it reclaims resources after transmission completes.
 */
static void stmmac_tx(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;

607 608
	spin_lock(&priv->tx_lock);

609 610 611 612 613 614 615
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
616
		if (priv->hw->desc->get_tx_owner(p))
617 618 619
			break;

		/* Verify tx error by looking at the last segment */
620
		last = priv->hw->desc->get_tx_ls(p);
621 622
		if (likely(last)) {
			int tx_error =
623 624
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
625
							  priv->ioaddr);
626 627 628 629 630 631 632 633 634 635 636
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
637
					 priv->hw->desc->get_tx_len(p),
638
					 DMA_TO_DEVICE);
639
		priv->hw->ring->clean_desc3(p);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

		if (likely(skb != NULL)) {
			/*
			 * If there's room in the queue (limit it to size)
			 * we add this skb back into the pool,
			 * if it's the right size.
			 */
			if ((skb_queue_len(&priv->rx_recycle) <
				priv->dma_rx_size) &&
				skb_recycle_check(skb, priv->dma_buf_sz))
				__skb_queue_head(&priv->rx_recycle, skb);
			else
				dev_kfree_skb(skb);

			priv->tx_skbuff[entry] = NULL;
		}

657
		priv->hw->desc->release_tx_desc(p);
658 659 660 661 662 663 664 665 666 667 668 669 670

		entry = (++priv->dirty_tx) % txsize;
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
671
	spin_unlock(&priv->tx_lock);
672 673 674 675
}

static inline void stmmac_enable_irq(struct stmmac_priv *priv)
{
676 677 678 679
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
	else
680
#endif
681
		priv->hw->dma->enable_dma_irq(priv->ioaddr);
682 683 684 685
}

static inline void stmmac_disable_irq(struct stmmac_priv *priv)
{
686 687 688 689
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_stop();
	else
690
#endif
691
		priv->hw->dma->disable_dma_irq(priv->ioaddr);
692 693 694 695 696 697 698
}

static int stmmac_has_work(struct stmmac_priv *priv)
{
	unsigned int has_work = 0;
	int rxret, tx_work = 0;

699
	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		(priv->cur_rx % priv->dma_rx_size));

	if (priv->dirty_tx != priv->cur_tx)
		tx_work = 1;

	if (likely(!rxret || tx_work))
		has_work = 1;

	return has_work;
}

static inline void _stmmac_schedule(struct stmmac_priv *priv)
{
	if (likely(stmmac_has_work(priv))) {
		stmmac_disable_irq(priv);
		napi_schedule(&priv->napi);
	}
}

#ifdef CONFIG_STMMAC_TIMER
void stmmac_schedule(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	priv->xstats.sched_timer_n++;

	_stmmac_schedule(priv);
}

static void stmmac_no_timer_started(unsigned int x)
{;
};

static void stmmac_no_timer_stopped(void)
{;
};
#endif

/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

748
	priv->hw->dma->stop_tx(priv->ioaddr);
749
	dma_free_tx_skbufs(priv);
750
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
751 752
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
753
	priv->hw->dma->start_tx(priv->ioaddr);
754 755 756 757 758 759

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}


760 761 762 763
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

764
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
765 766 767 768 769 770 771
	if (likely(status == handle_tx_rx))
		_stmmac_schedule(priv);

	else if (unlikely(status == tx_hard_error_bump_tc)) {
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
772
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
773
			priv->xstats.threshold = tc;
774
		}
775 776
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
777 778
}

779 780 781 782 783
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
784 785
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
786
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
787 788 789 790 791 792

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
		pr_info(" No MAC Management Counters available");
793 794
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

		pr_info("STMMAC - user ID: 0x%x, Synopsys ID: 0x%x\n",
			uid, synid);

		return synid;
	}
	return 0;
}
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/**
 * stmmac_selec_desc_mode
 * @dev : device pointer
 * Description: select the Enhanced/Alternate or Normal descriptors */
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
836 837 838
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
839
	u32 hw_cap = 0;
840

841 842
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
843

844 845 846 847 848 849 850 851 852 853 854 855
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
856
		/* MMC */
857
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
858
		/* IEEE 1588-2002*/
859 860
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
861
		/* IEEE 1588-2008*/
862 863
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
864
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
865 866
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
867
		/* TX and RX csum */
868 869 870 871 872 873 874
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
875
		/* TX and RX number of channels */
876 877 878 879
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
880
		/* Alternate (enhanced) DESC mode*/
881 882
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
883

884
	}
885 886 887 888

	return hw_cap;
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

	/* Check that the MAC address is valid.  If its not, refuse
	 * to bring the device up. The user must specify an
	 * address using the following linux command:
	 *      ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx  */
	if (!is_valid_ether_addr(dev->dev_addr)) {
		random_ether_addr(dev->dev_addr);
		pr_warning("%s: generated random MAC address %pM\n", dev->name,
			dev->dev_addr);
	}

	stmmac_verify_args();

#ifdef CONFIG_STMMAC_TIMER
916
	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
917
	if (unlikely(priv->tm == NULL)) {
918
		pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
919 920 921 922
		return -ENOMEM;
	}
	priv->tm->freq = tmrate;

923 924
	/* Test if the external timer can be actually used.
	 * In case of failure continue without timer. */
925
	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
926
		pr_warning("stmmaceth: cannot attach the external timer.\n");
927 928 929
		priv->tm->freq = 0;
		priv->tm->timer_start = stmmac_no_timer_started;
		priv->tm->timer_stop = stmmac_no_timer_stopped;
930 931
	} else
		priv->tm->enable = 1;
932
#endif
933 934 935 936 937
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
938

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	stmmac_get_synopsys_id(priv);

	priv->hw_cap_support = stmmac_get_hw_features(priv);

	if (priv->hw_cap_support) {
		pr_info(" Support DMA HW capability register");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->tx_coe = priv->dma_cap.tx_coe;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;

		/* By default disable wol on magic frame if not supported */
		if (!priv->dma_cap.pmt_magic_frame)
			priv->wolopts &= ~WAKE_MAGIC;

	} else
		pr_info(" No HW DMA feature register supported");

	/* Select the enhnaced/normal descriptor structures */
	stmmac_selec_desc_mode(priv);

	/* PMT module is not integrated in all the MAC devices. */
	if (priv->plat->pmt) {
		pr_info(" Remote wake-up capable\n");
		device_set_wakeup_capable(priv->device, 1);
	}

	priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
	if (priv->rx_coe)
		pr_info(" Checksum Offload Engine supported\n");
	if (priv->plat->tx_coe)
		pr_info(" Checksum insertion supported\n");

977 978 979 980 981 982 983
	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
984 985 986
	ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
				  priv->dma_tx_phy, priv->dma_rx_phy);
	if (ret < 0) {
987
		pr_err("%s: DMA initialization failed\n", __func__);
988
		goto open_error;
989 990 991
	}

	/* Copy the MAC addr into the HW  */
992
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
993
	/* If required, perform hw setup of the bus. */
994 995
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
996
	/* Initialize the MAC Core */
997
	priv->hw->mac->core_init(priv->ioaddr);
998

999
	netdev_update_features(dev);
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1010
	/* Enable the MAC Rx/Tx */
1011
	stmmac_enable_mac(priv->ioaddr);
1012 1013 1014 1015 1016 1017 1018 1019

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1020
	stmmac_mmc_setup(priv);
1021

1022 1023
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1024 1025
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1026 1027 1028 1029 1030 1031

#ifdef CONFIG_STMMAC_TIMER
	priv->tm->timer_start(tmrate);
#endif
	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1032 1033
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1034 1035 1036 1037 1038 1039 1040 1041
	}

	if (priv->phydev)
		phy_start(priv->phydev);

	napi_enable(&priv->napi);
	skb_queue_head_init(&priv->rx_recycle);
	netif_start_queue(dev);
1042

1043
	return 0;
1044 1045 1046 1047 1048 1049 1050 1051 1052

open_error:
#ifdef CONFIG_STMMAC_TIMER
	kfree(priv->tm);
#endif
	if (priv->phydev)
		phy_disconnect(priv->phydev);

	return ret;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

#ifdef CONFIG_STMMAC_TIMER
	/* Stop and release the timer */
	stmmac_close_ext_timer();
	if (priv->tm != NULL)
		kfree(priv->tm);
#endif
	napi_disable(&priv->napi);
	skb_queue_purge(&priv->rx_recycle);

	/* Free the IRQ lines */
	free_irq(dev->irq, dev);

	/* Stop TX/RX DMA and clear the descriptors */
1087 1088
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1089 1090 1091 1092

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1093 1094
	/* Disable the MAC Rx/Tx */
	stmmac_disable_mac(priv->ioaddr);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	netif_carrier_off(dev);

	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
	int i, csum_insertion = 0;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1115
	unsigned int nopaged_len = skb_headlen(skb);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1127 1128
	spin_lock(&priv->tx_lock);

1129 1130 1131 1132 1133 1134 1135
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
		pr_info("stmmac xmit:\n"
		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1136
		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1137 1138 1139
		       !skb_is_gso(skb) ? "isn't" : "is");
#endif

1140
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1141 1142 1143 1144 1145 1146 1147 1148

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
		       "\t\tn_frags: %d, ip_summed: %d\n",
1149
		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1150 1151
#endif
	priv->tx_skbuff[entry] = skb;
1152 1153 1154

	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1155 1156 1157 1158
		desc = priv->dma_tx + entry;
	} else {
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1159 1160
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1161 1162 1163
	}

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1164 1165
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1166 1167 1168 1169 1170

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1171 1172
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1173
		priv->tx_skbuff[entry] = NULL;
1174
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1175
		wmb();
1176
		priv->hw->desc->set_tx_owner(desc);
1177 1178 1179
	}

	/* Interrupt on completition only for the latest segment */
1180
	priv->hw->desc->close_tx_desc(desc);
1181

1182
#ifdef CONFIG_STMMAC_TIMER
1183 1184
	/* Clean IC while using timer */
	if (likely(priv->tm->enable))
1185
		priv->hw->desc->clear_tx_ic(desc);
1186
#endif
1187 1188 1189

	wmb();

1190
	/* To avoid raise condition */
1191
	priv->hw->desc->set_tx_owner(first);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1213 1214
	skb_tx_timestamp(skb);

1215 1216
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1217 1218
	spin_unlock(&priv->tx_lock);

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

			skb = __skb_dequeue(&priv->rx_recycle);
			if (skb == NULL)
				skb = netdev_alloc_skb_ip_align(priv->dev,
								bfsize);

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1247 1248 1249 1250

			if (unlikely(priv->plat->has_gmac))
				priv->hw->ring->refill_desc3(bfsize, p + entry);

1251 1252
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1253
		wmb();
1254
		priv->hw->desc->set_rx_owner(p + entry);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
	count = 0;
1274
	while (!priv->hw->desc->get_rx_owner(p)) {
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1287 1288
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1289 1290 1291 1292
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1293
			int frame_len;
1294

1295 1296 1297 1298 1299
			frame_len = priv->hw->desc->get_rx_frame_len(p);
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1331 1332
			if (unlikely(!priv->rx_coe)) {
				/* No RX COE for old mac10/100 devices */
1333
				skb_checksum_none_assert(skb);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
				netif_receive_skb(skb);
			} else {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				napi_gro_receive(&priv->napi, skb);
			}

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
 *   This function implements the the reception process.
 *   Also it runs the TX completion thread
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

	priv->xstats.poll_n++;
	stmmac_tx(priv);
	work_done = stmmac_rx(priv, budget);

	if (work_done < budget) {
		napi_complete(napi);
		stmmac_enable_irq(priv);
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
 *   complete within a reasonable tmrate. The driver will mark the error in the
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1419
 *  stmmac_set_rx_mode - entry point for multicast addressing
1420 1421 1422 1423 1424 1425 1426
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1427
static void stmmac_set_rx_mode(struct net_device *dev)
1428 1429 1430 1431
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1432
	priv->hw->mac->set_filter(dev);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1457
	if (priv->plat->enh_desc)
1458 1459
		max_mtu = JUMBO_LEN;
	else
1460
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1461 1462 1463 1464 1465 1466

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1467 1468 1469 1470 1471 1472
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

1473 1474
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
1475 1476 1477 1478 1479 1480 1481 1482
{
	struct stmmac_priv *priv = netdev_priv(dev);

	if (!priv->rx_coe)
		features &= ~NETIF_F_RXCSUM;
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1483 1484 1485 1486
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1487 1488
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1489

1490
	return features;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1503
	if (priv->plat->has_gmac)
1504
		/* To handle GMAC own interrupts */
1505
		priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1506 1507

	stmmac_dma_interrupt(priv);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1536
	int ret;
1537 1538 1539 1540

	if (!netif_running(dev))
		return -EINVAL;

1541 1542 1543 1544 1545
	if (!priv->phydev)
		return -EINVAL;

	ret = phy_mii_ioctl(priv->phydev, rq, cmd);

1546 1547 1548
	return ret;
}

1549 1550 1551
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1552
static struct dentry *stmmac_dma_cap;
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	seq_printf(seq, "=======================\n");
	seq_printf(seq, " RX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	seq_printf(seq, "\n");
	seq_printf(seq, "=======================\n");
	seq_printf(seq, "  TX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_tx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = seq_release,
};

1606 1607 1608 1609 1610
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

1611
	if (!priv->hw_cap_support) {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = seq_release,
};

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1714 1715 1716 1717 1718 1719
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
1720
	debugfs_remove(stmmac_dma_cap);
1721 1722 1723 1724
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

1725 1726 1727 1728 1729
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
1730
	.ndo_fix_features = stmmac_fix_features,
1731
	.ndo_set_rx_mode = stmmac_set_rx_mode,
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

/**
 * stmmac_probe - Initialization of the adapter .
 * @dev : device pointer
 * Description: The function initializes the network device structure for
 * the STMMAC driver. It also calls the low level routines
 * in order to init the HW (i.e. the DMA engine)
 */
static int stmmac_probe(struct net_device *dev)
{
	int ret = 0;
	struct stmmac_priv *priv = netdev_priv(dev);

	ether_setup(dev);

	dev->netdev_ops = &stmmac_netdev_ops;
	stmmac_set_ethtool_ops(dev);

1758 1759
	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
	dev->features |= NETIF_F_HW_VLAN_RX;
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

	priv->pause = pause;
	netif_napi_add(dev, &priv->napi, stmmac_poll, 64);

	/* Get the MAC address */
1774 1775
	priv->hw->mac->get_umac_addr((void __iomem *) dev->base_addr,
				     dev->dev_addr, 0);
1776 1777 1778 1779 1780

	if (!is_valid_ether_addr(dev->dev_addr))
		pr_warning("\tno valid MAC address;"
			"please, use ifconfig or nwhwconfig!\n");

1781
	spin_lock_init(&priv->lock);
1782
	spin_lock_init(&priv->tx_lock);
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792
	ret = register_netdev(dev);
	if (ret) {
		pr_err("%s: ERROR %i registering the device\n",
		       __func__, ret);
		return -ENODEV;
	}

	DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
	    dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1793
	    (dev->features & NETIF_F_IP_CSUM) ? "on" : "off");
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	return ret;
}

/**
 * stmmac_mac_device_setup
 * @dev : device pointer
 * Description: select and initialise the mac device (mac100 or Gmac).
 */
static int stmmac_mac_device_setup(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	struct mac_device_info *device;

1809 1810
	if (priv->plat->has_gmac) {
		dev->priv_flags |= IFF_UNICAST_FLT;
1811
		device = dwmac1000_setup(priv->ioaddr);
1812
	} else {
1813
		device = dwmac100_setup(priv->ioaddr);
1814
	}
1815

1816 1817 1818
	if (!device)
		return -ENOMEM;

1819
	priv->hw = device;
1820
	priv->hw->ring = &ring_mode_ops;
1821

1822
	if (device_can_wakeup(priv->device)) {
1823
		priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
1824
		enable_irq_wake(priv->wol_irq);
1825
	}
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

	return 0;
}

/**
 * stmmac_dvr_probe
 * @pdev: platform device pointer
 * Description: the driver is initialized through platform_device.
 */
static int stmmac_dvr_probe(struct platform_device *pdev)
{
	int ret = 0;
	struct resource *res;
1839
	void __iomem *addr = NULL;
1840
	struct net_device *ndev = NULL;
1841
	struct stmmac_priv *priv = NULL;
1842 1843 1844 1845
	struct plat_stmmacenet_data *plat_dat;

	pr_info("STMMAC driver:\n\tplatform registration... ");
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1846 1847
	if (!res)
		return -ENODEV;
1848
	pr_info("\tdone!\n");
1849

D
Dan Carpenter 已提交
1850
	if (!request_mem_region(res->start, resource_size(res),
1851 1852 1853 1854
				pdev->name)) {
		pr_err("%s: ERROR: memory allocation failed"
		       "cannot get the I/O addr 0x%x\n",
		       __func__, (unsigned int)res->start);
1855
		return -EBUSY;
1856 1857
	}

D
Dan Carpenter 已提交
1858
	addr = ioremap(res->start, resource_size(res));
1859
	if (!addr) {
D
Dan Carpenter 已提交
1860
		pr_err("%s: ERROR: memory mapping failed\n", __func__);
1861
		ret = -ENOMEM;
1862
		goto out_release_region;
1863 1864 1865 1866 1867 1868
	}

	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
	if (!ndev) {
		pr_err("%s: ERROR: allocating the device\n", __func__);
		ret = -ENOMEM;
1869
		goto out_unmap;
1870 1871 1872 1873 1874 1875 1876 1877 1878
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);

	/* Get the MAC information */
	ndev->irq = platform_get_irq_byname(pdev, "macirq");
	if (ndev->irq == -ENXIO) {
		pr_err("%s: ERROR: MAC IRQ configuration "
		       "information not found\n", __func__);
1879 1880
		ret = -ENXIO;
		goto out_free_ndev;
1881 1882 1883 1884 1885
	}

	priv = netdev_priv(ndev);
	priv->device = &(pdev->dev);
	priv->dev = ndev;
1886
	plat_dat = pdev->dev.platform_data;
1887 1888 1889

	priv->plat = plat_dat;

1890
	priv->ioaddr = addr;
1891

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	/*
	 * On some platforms e.g. SPEAr the wake up irq differs from the mac irq
	 * The external wake up irq can be passed through the platform code
	 * named as "eth_wake_irq"
	 *
	 * In case the wake up interrupt is not passed from the platform
	 * so the driver will continue to use the mac irq (ndev->irq)
	 */
	priv->wol_irq = platform_get_irq_byname(pdev, "eth_wake_irq");
	if (priv->wol_irq == -ENXIO)
		priv->wol_irq = ndev->irq;

1904 1905 1906 1907 1908
	platform_set_drvdata(pdev, ndev);

	/* Set the I/O base addr */
	ndev->base_addr = (unsigned long)addr;

1909 1910 1911 1912
	/* Custom initialisation */
	if (priv->plat->init) {
		ret = priv->plat->init(pdev);
		if (unlikely(ret))
1913
			goto out_free_ndev;
1914
	}
1915

1916
	/* MAC HW device detection */
1917 1918
	ret = stmmac_mac_device_setup(ndev);
	if (ret < 0)
1919
		goto out_plat_exit;
1920 1921 1922 1923

	/* Network Device Registration */
	ret = stmmac_probe(ndev);
	if (ret < 0)
1924
		goto out_plat_exit;
1925

1926 1927 1928 1929
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;
1930 1931

	pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
D
David S. Miller 已提交
1932 1933
	       "\tIO base addr: 0x%p)\n", ndev->name, pdev->name,
	       pdev->id, ndev->irq, addr);
1934 1935

	/* MDIO bus Registration */
1936
	pr_debug("\tMDIO bus (id: %d)...", priv->plat->bus_id);
1937 1938
	ret = stmmac_mdio_register(ndev);
	if (ret < 0)
1939
		goto out_unregister;
1940
	pr_debug("registered!\n");
1941 1942 1943 1944 1945 1946 1947

#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(ndev);
	if (ret < 0)
		pr_warning("\tFailed debugFS registration");
#endif

1948
	return 0;
1949

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
out_unregister:
	unregister_netdev(ndev);
out_plat_exit:
	if (priv->plat->exit)
		priv->plat->exit(pdev);
out_free_ndev:
	free_netdev(ndev);
	platform_set_drvdata(pdev, NULL);
out_unmap:
	iounmap(addr);
out_release_region:
	release_mem_region(res->start, resource_size(res));
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	return ret;
}

/**
 * stmmac_dvr_remove
 * @pdev: platform device pointer
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
 * changes the link status, releases the DMA descriptor rings,
 * unregisters the MDIO bus and unmaps the allocated memory.
 */
static int stmmac_dvr_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
1976
	struct stmmac_priv *priv = netdev_priv(ndev);
1977 1978 1979 1980
	struct resource *res;

	pr_info("%s:\n\tremoving driver", __func__);

1981 1982
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
1983

1984
	stmmac_disable_mac(priv->ioaddr);
1985 1986 1987 1988 1989

	netif_carrier_off(ndev);

	stmmac_mdio_unregister(ndev);

1990 1991 1992
	if (priv->plat->exit)
		priv->plat->exit(pdev);

1993 1994 1995
	platform_set_drvdata(pdev, NULL);
	unregister_netdev(ndev);

1996
	iounmap((void *)priv->ioaddr);
1997
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
D
Dan Carpenter 已提交
1998
	release_mem_region(res->start, resource_size(res));
1999

2000 2001 2002 2003
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif

2004 2005 2006 2007 2008 2009
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2010
static int stmmac_suspend(struct device *dev)
2011
{
2012 2013
	struct net_device *ndev = dev_get_drvdata(dev);
	struct stmmac_priv *priv = netdev_priv(ndev);
2014 2015
	int dis_ic = 0;

2016
	if (!ndev || !netif_running(ndev))
2017 2018
		return 0;

2019 2020 2021
	if (priv->phydev)
		phy_stop(priv->phydev);

2022 2023
	spin_lock(&priv->lock);

2024 2025
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2026 2027

#ifdef CONFIG_STMMAC_TIMER
2028 2029 2030
	priv->tm->timer_stop();
	if (likely(priv->tm->enable))
		dis_ic = 1;
2031
#endif
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
	/* Clear the Rx/Tx descriptors */
	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
				     dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
	else
		stmmac_disable_mac(priv->ioaddr);
2047 2048 2049 2050 2051

	spin_unlock(&priv->lock);
	return 0;
}

2052
static int stmmac_resume(struct device *dev)
2053
{
2054 2055
	struct net_device *ndev = dev_get_drvdata(dev);
	struct stmmac_priv *priv = netdev_priv(ndev);
2056

2057
	if (!netif_running(ndev))
2058 2059
		return 0;

2060 2061
	spin_lock(&priv->lock);

2062 2063 2064 2065 2066
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2067
	if (device_may_wakeup(priv->device))
2068
		priv->hw->mac->pmt(priv->ioaddr, 0);
2069

2070
	netif_device_attach(ndev);
2071 2072

	/* Enable the MAC and DMA */
2073
	stmmac_enable_mac(priv->ioaddr);
2074 2075
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2076 2077

#ifdef CONFIG_STMMAC_TIMER
2078 2079
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
2080 2081 2082
#endif
	napi_enable(&priv->napi);

2083
	netif_start_queue(ndev);
2084 2085

	spin_unlock(&priv->lock);
2086 2087 2088 2089

	if (priv->phydev)
		phy_start(priv->phydev);

2090 2091 2092
	return 0;
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
static int stmmac_freeze(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);

	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

static int stmmac_restore(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);

	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}

static const struct dev_pm_ops stmmac_pm_ops = {
2114 2115
	.suspend = stmmac_suspend,
	.resume = stmmac_resume,
2116 2117 2118 2119 2120 2121 2122
	.freeze = stmmac_freeze,
	.thaw = stmmac_restore,
	.restore = stmmac_restore,
};
#else
static const struct dev_pm_ops stmmac_pm_ops;
#endif /* CONFIG_PM */
2123

2124 2125 2126 2127 2128 2129 2130 2131
static struct platform_driver stmmac_driver = {
	.probe = stmmac_dvr_probe,
	.remove = stmmac_dvr_remove,
	.driver = {
		.name = STMMAC_RESOURCE_NAME,
		.owner = THIS_MODULE,
		.pm = &stmmac_pm_ops,
	},
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
};

#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		if (!strncmp(opt, "debug:", 6)) {
			if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
			if (strict_strtoul(opt + 8, 0,
					   (unsigned long *)&phyaddr))
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
			if (strict_strtoul(opt + 11, 0,
					   (unsigned long *)&dma_txsize))
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
			if (strict_strtoul(opt + 11, 0,
					   (unsigned long *)&dma_rxsize))
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
			if (strict_strtoul(opt + 7, 0,
					   (unsigned long *)&buf_sz))
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
			if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
			if (strict_strtoul(opt + 9, 0,
					   (unsigned long *)&watchdog))
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
			if (strict_strtoul(opt + 10, 0,
					   (unsigned long *)&flow_ctrl))
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
			if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
				goto err;
2175
#ifdef CONFIG_STMMAC_TIMER
2176 2177 2178 2179
		} else if (!strncmp(opt, "tmrate:", 7)) {
			if (strict_strtoul(opt + 7, 0,
					   (unsigned long *)&tmrate))
				goto err;
2180
#endif
2181
		}
2182 2183
	}
	return 0;
2184 2185 2186 2187

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2188 2189 2190 2191 2192
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif

2193
module_platform_driver(stmmac_driver);
2194 2195 2196 2197

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");