stmmac_main.c 66.8 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

31
#include <linux/clk.h>
32 33 34 35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
41
#include <linux/if.h>
42 43
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
44
#include <linux/slab.h>
45
#include <linux/prefetch.h>
46 47 48 49
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
50
#include "stmmac.h"
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
72
#ifdef STMMAC_XMIT_DEBUG
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

91
int phyaddr = -1;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

127 128 129 130 131 132
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))

133 134 135 136 137 138 139
/* By default the driver will use the ring mode to manage tx and rx descriptors
 * but passing this value so user can force to use the chain instead of the ring
 */
static unsigned int chain_mode;
module_param(chain_mode, int, S_IRUGO);
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");

140 141
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

142 143 144 145 146
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

147 148
#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
170 171
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

	clk_rate = clk_get_rate(priv->stmmac_clk);

	/* Platform provided default clk_csr would be assumed valid
	 * for all other cases except for the below mentioned ones. */
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
			priv->clk_csr = STMMAC_CSR_250_300M;
	} /* For values higher than the IEEE 802.3 specified frequency
	   * we can not estimate the proper divider as it is not known
	   * the frequency of clk_csr_i. So we do not change the default
	   * divider. */
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

223 224 225 226 227 228 229 230 231 232 233 234
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
	/* Check and enter in LPI mode */
	if ((priv->dirty_tx == priv->cur_tx) &&
	    (priv->tx_path_in_lpi_mode == false))
		priv->hw->mac->set_eee_mode(priv->ioaddr);
}

void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
	/* Exit and disable EEE in case of we are are in LPI state. */
	priv->hw->mac->reset_eee_mode(priv->ioaddr);
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
 * stmmac_eee_ctrl_timer
 * @arg : data hook
 * Description:
 *  If there is no data transfer and if we are not in LPI state,
 *  then MAC Transmitter can be moved to LPI state.
 */
static void stmmac_eee_ctrl_timer(unsigned long arg)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)arg;

	stmmac_enable_eee_mode(priv);
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
}

/**
 * stmmac_eee_init
 * @priv: private device pointer
 * Description:
 *  If the EEE support has been enabled while configuring the driver,
 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 *  phy can also manage EEE, so enable the LPI state and start the timer
 *  to verify if the tx path can enter in LPI state.
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
	bool ret = false;

	/* MAC core supports the EEE feature. */
	if (priv->dma_cap.eee) {
		/* Check if the PHY supports EEE */
		if (phy_init_eee(priv->phydev, 1))
			goto out;

		priv->eee_active = 1;
		init_timer(&priv->eee_ctrl_timer);
		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
		priv->eee_ctrl_timer.data = (unsigned long)priv;
		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
		add_timer(&priv->eee_ctrl_timer);

		priv->hw->mac->set_eee_timer(priv->ioaddr,
					     STMMAC_DEFAULT_LIT_LS_TIMER,
					     priv->tx_lpi_timer);

		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");

		ret = true;
	}
out:
	return ret;
}

static void stmmac_eee_adjust(struct stmmac_priv *priv)
{
	/* When the EEE has been already initialised we have to
	 * modify the PLS bit in the LPI ctrl & status reg according
	 * to the PHY link status. For this reason.
	 */
	if (priv->eee_enabled)
		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
334

335
	if (phydev->link) {
336
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
337 338 339 340 341 342

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
343
				ctrl &= ~priv->hw->link.duplex;
344
			else
345
				ctrl |= priv->hw->link.duplex;
346 347 348 349
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
350
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
351
						 fc, pause_time);
352 353 354 355 356

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
357
				if (likely(priv->plat->has_gmac))
358
					ctrl &= ~priv->hw->link.port;
359
					stmmac_hw_fix_mac_speed(priv);
360 361 362
				break;
			case 100:
			case 10:
363
				if (priv->plat->has_gmac) {
364
					ctrl |= priv->hw->link.port;
365
					if (phydev->speed == SPEED_100) {
366
						ctrl |= priv->hw->link.speed;
367
					} else {
368
						ctrl &= ~(priv->hw->link.speed);
369 370
					}
				} else {
371
					ctrl &= ~priv->hw->link.port;
372
				}
373
				stmmac_hw_fix_mac_speed(priv);
374 375 376 377 378 379 380 381 382 383 384
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

385
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

401 402
	stmmac_eee_adjust(priv);

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
420
	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
421
	char bus_id[MII_BUS_ID_SIZE];
422
	int interface = priv->plat->interface;
423 424 425 426
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

427 428 429 430 431 432 433
	if (priv->plat->phy_bus_name)
		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
				priv->plat->phy_bus_name, priv->plat->bus_id);
	else
		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
				priv->plat->bus_id);

434
	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
435
		 priv->plat->phy_addr);
436
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
437

438
	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
439 440 441 442 443 444

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

445
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
446 447 448 449
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
450

451 452 453 454 455 456 457 458 459 460 461 462
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
463
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
464 465 466 467 468 469 470

	priv->phydev = phydev;

	return 0;
}

/**
471
 * stmmac_display_ring
472 473
 * @p: pointer to the ring.
 * @size: size of the ring.
474
 * Description: display the control/status and buffer descriptors.
475
 */
476
static void stmmac_display_ring(void *head, int size, int extend_desc)
477 478
{
	int i;
479 480 481
	struct dma_extended_desc *ep = (struct dma_extended_desc *) head;
	struct dma_desc *p = (struct dma_desc *) head;

482
	for (i = 0; i < size; i++) {
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		u64 x;
		if (extend_desc) {
			x = *(u64 *) ep;
			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				i, (unsigned int) virt_to_phys(ep),
				(unsigned int) x, (unsigned int) (x >> 32),
				ep->basic.des2, ep->basic.des3);
			ep++;
		} else {
			x = *(u64 *) p;
			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
				i, (unsigned int) virt_to_phys(p),
				(unsigned int) x, (unsigned int) (x >> 32),
				p->des2, p->des3);
			p++;
		}
499 500 501 502
		pr_info("\n");
	}
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
static void stmmac_display_rings(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;

	if (priv->extend_desc) {
		pr_info("Extended RX descriptor ring:\n");
		stmmac_display_ring((void *) priv->dma_erx, rxsize, 1);
		pr_info("Extended TX descriptor ring:\n");
		stmmac_display_ring((void *) priv->dma_etx, txsize, 1);
	} else {
		pr_info("RX descriptor ring:\n");
		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
		pr_info("TX descriptor ring:\n");
		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
	}
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static void stmmac_clear_descriptors(struct stmmac_priv *priv)
{
	int i;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;

	/* Clear the Rx/Tx descriptors */
	for (i = 0; i < rxsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
						     priv->use_riwt, priv->mode,
						     (i == rxsize - 1));
		else
			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
						     priv->use_riwt, priv->mode,
						     (i == rxsize - 1));
	for (i = 0; i < txsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
						     priv->mode,
						     (i == txsize - 1));
		else
			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
						     priv->mode,
						     (i == txsize - 1));
}

static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
				  int i)
{
	struct sk_buff *skb;

	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
				 GFP_KERNEL);
	if (unlikely(skb == NULL)) {
		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
		return 1;
	}
	skb_reserve(skb, NET_IP_ALIGN);
	priv->rx_skbuff[i] = skb;
	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						priv->dma_buf_sz,
						DMA_FROM_DEVICE);

	p->des2 = priv->rx_skbuff_dma[i];

	if ((priv->mode == STMMAC_RING_MODE) &&
	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
		priv->hw->ring->init_desc3(p);

	return 0;
}

590 591 592 593
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
594 595
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
596 597 598 599 600 601 602
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
603
	unsigned int bfsize = 0;
604

605 606
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
607 608
	if (priv->mode == STMMAC_RING_MODE)
		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
609

610
	if (bfsize < BUF_SIZE_16KiB)
611
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
612 613 614 615

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	if (priv->extend_desc) {
		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
						   sizeof(struct
							  dma_extended_desc),
						   &priv->dma_rx_phy,
						   GFP_KERNEL);
		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
						   sizeof(struct
							  dma_extended_desc),
						   &priv->dma_tx_phy,
						   GFP_KERNEL);
		if ((!priv->dma_erx) || (!priv->dma_etx))
			return;
	} else {
		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);
		if ((!priv->dma_rx) || (!priv->dma_tx))
			return;
	}

642 643 644 645 646 647
	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
					    GFP_KERNEL);
	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
					GFP_KERNEL);
	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
					GFP_KERNEL);
648 649 650
	if (netif_msg_drv(priv))
		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
651 652

	/* RX INITIALIZATION */
653
	DBG(probe, INFO, "stmmac: SKB addresses:\nskb\t\tskb data\tdma data\n");
654
	for (i = 0; i < rxsize; i++) {
655 656 657 658 659
		struct dma_desc *p;
		if (priv->extend_desc)
			p = &((priv->dma_erx + i)->basic);
		else
			p = priv->dma_rx + i;
660

661
		if (stmmac_init_rx_buffers(priv, p, i))
662
			break;
663

664 665 666 667 668 669 670 671
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	/* Setup the chained descriptor addresses */
	if (priv->mode == STMMAC_CHAIN_MODE) {
		if (priv->extend_desc) {
			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
					      rxsize, 1);
			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
					      txsize, 1);
		} else {
			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
					      rxsize, 0);
			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
					      txsize, 0);
		}
	}

687 688
	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
689 690 691 692 693 694
		struct dma_desc *p;
		if (priv->extend_desc)
			p = &((priv->dma_etx + i)->basic);
		else
			p = priv->dma_tx + i;
		p->des2 = 0;
695 696
		priv->tx_skbuff[i] = NULL;
	}
697

698 699 700
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

701
	stmmac_clear_descriptors(priv);
702

703 704
	if (netif_msg_hw(priv))
		stmmac_display_rings(priv);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
727 728 729 730 731 732
			struct dma_desc *p;
			if (priv->extend_desc)
				p = &((priv->dma_etx + i)->basic);
			else
				p = priv->dma_tx + i;

733 734
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
735 736
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
737 738 739 740 741 742 743 744 745 746 747 748 749 750
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	if (!priv->extend_desc) {
		dma_free_coherent(priv->device,
				  priv->dma_tx_size * sizeof(struct dma_desc),
				  priv->dma_tx, priv->dma_tx_phy);
		dma_free_coherent(priv->device,
				  priv->dma_rx_size * sizeof(struct dma_desc),
				  priv->dma_rx, priv->dma_rx_phy);
	} else {
		dma_free_coherent(priv->device, priv->dma_tx_size *
				  sizeof(struct dma_extended_desc),
				  priv->dma_etx, priv->dma_tx_phy);
		dma_free_coherent(priv->device, priv->dma_rx_size *
				  sizeof(struct dma_extended_desc),
				  priv->dma_erx, priv->dma_rx_phy);
	}
766 767 768 769 770 771 772 773 774
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
775
 *  or Store-And-Forward capability.
776 777 778
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
779 780 781 782 783
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
784 785 786 787 788 789 790 791 792
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
793 794 795
}

/**
796 797
 * stmmac_tx_clean:
 * @priv: private data pointer
798 799
 * Description: it reclaims resources after transmission completes.
 */
800
static void stmmac_tx_clean(struct stmmac_priv *priv)
801 802 803
{
	unsigned int txsize = priv->dma_tx_size;

804 805
	spin_lock(&priv->tx_lock);

806 807
	priv->xstats.tx_clean++;

808 809 810 811
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
812 813 814 815 816 817
		struct dma_desc *p;

		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_etx + entry);
		else
			p = priv->dma_tx + entry;
818 819

		/* Check if the descriptor is owned by the DMA. */
820
		if (priv->hw->desc->get_tx_owner(p))
821 822
			break;

823
		/* Verify tx error by looking at the last segment. */
824
		last = priv->hw->desc->get_tx_ls(p);
825 826
		if (likely(last)) {
			int tx_error =
827 828
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
829
							  priv->ioaddr);
830 831 832 833 834 835 836 837 838 839 840
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
841
					 priv->hw->desc->get_tx_len(p),
842
					 DMA_TO_DEVICE);
843 844
		if (priv->mode == STMMAC_RING_MODE)
			priv->hw->ring->clean_desc3(p);
845 846

		if (likely(skb != NULL)) {
E
Eric Dumazet 已提交
847
			dev_kfree_skb(skb);
848 849 850
			priv->tx_skbuff[entry] = NULL;
		}

851
		priv->hw->desc->release_tx_desc(p, priv->mode);
852

853
		priv->dirty_tx++;
854 855 856 857 858 859 860 861 862 863 864
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
865 866 867 868 869

	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
		stmmac_enable_eee_mode(priv);
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
	}
870
	spin_unlock(&priv->tx_lock);
871 872
}

873
static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
874
{
875
	priv->hw->dma->enable_dma_irq(priv->ioaddr);
876 877
}

878
static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
879
{
880
	priv->hw->dma->disable_dma_irq(priv->ioaddr);
881 882 883 884 885 886 887 888 889 890 891
}


/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
892 893
	int i;
	int txsize = priv->dma_tx_size;
894 895
	netif_stop_queue(priv->dev);

896
	priv->hw->dma->stop_tx(priv->ioaddr);
897
	dma_free_tx_skbufs(priv);
898 899 900 901 902 903 904 905 906
	for (i = 0; i < txsize; i++)
		if (priv->extend_desc)
			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
						     priv->mode,
						     (i == txsize - 1));
		else
			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
						     priv->mode,
						     (i == txsize - 1));
907 908
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
909
	priv->hw->dma->start_tx(priv->ioaddr);
910 911 912 913 914

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}

915 916 917 918
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

919
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
920 921 922 923 924 925 926
	if (likely((status & handle_rx)) || (status & handle_tx)) {
		if (likely(napi_schedule_prep(&priv->napi))) {
			stmmac_disable_dma_irq(priv);
			__napi_schedule(&priv->napi);
		}
	}
	if (unlikely(status & tx_hard_error_bump_tc)) {
927 928 929
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
930
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
931
			priv->xstats.threshold = tc;
932
		}
933 934
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
935 936
}

937 938 939 940 941
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
942 943
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
944
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
945 946 947 948 949

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
950
		pr_info(" No MAC Management Counters available\n");
951 952
}

953 954 955 956 957 958 959 960 961 962
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

963
		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
964 965 966 967 968 969
			uid, synid);

		return synid;
	}
	return 0;
}
970

971 972
/**
 * stmmac_selec_desc_mode
973 974 975
 * @priv : private structure
 * Description: select the Enhanced/Alternate or Normal descriptors
 */
976 977 978 979
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
980 981 982 983 984 985 986 987

		/* GMAC older than 3.50 has no extended descriptors */
		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
			pr_info("\tEnabled extended descriptors\n");
			priv->extend_desc = 1;
		} else
			pr_warn("Extended descriptors not supported\n");

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
1003 1004 1005
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
1006
	u32 hw_cap = 0;
1007

1008 1009
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1023
		/* MMC */
1024
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1025
		/* IEEE 1588-2002*/
1026 1027
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1028
		/* IEEE 1588-2008*/
1029 1030
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1031
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1032 1033
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1034
		/* TX and RX csum */
1035 1036 1037 1038 1039 1040 1041
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1042
		/* TX and RX number of channels */
1043 1044 1045 1046
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1047
		/* Alternate (enhanced) DESC mode*/
1048 1049
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1050
	}
1051 1052 1053 1054

	return hw_cap;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	/* verify if the MAC address is valid, in case of failures it
	 * generates a random MAC address */
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
1064
			eth_hw_addr_random(priv->dev);
1065 1066 1067 1068 1069
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

1070 1071 1072
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1073
	int mixed_burst = 0;
1074
	int atds = 0;
1075 1076 1077 1078 1079 1080 1081

	/* Some DMA parameters can be passed from the platform;
	 * in case of these are not passed we keep a default
	 * (good for all the chips) and init the DMA! */
	if (priv->plat->dma_cfg) {
		pbl = priv->plat->dma_cfg->pbl;
		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1082
		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1083 1084 1085
		burst_len = priv->plat->dma_cfg->burst_len;
	}

1086 1087 1088
	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
		atds = 1;

1089
	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1090
				   burst_len, priv->dma_tx_phy,
1091
				   priv->dma_rx_phy, atds);
1092 1093
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/**
 * stmmac_tx_timer:
 * @data: data pointer
 * Description:
 * This is the timer handler to directly invoke the stmmac_tx_clean.
 */
static void stmmac_tx_timer(unsigned long data)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)data;

	stmmac_tx_clean(priv);
}

/**
 * stmmac_tx_timer:
 * @priv: private data structure
 * Description:
 * This inits the transmit coalesce parameters: i.e. timer rate,
 * timer handler and default threshold used for enabling the
 * interrupt on completion bit.
 */
static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
{
	priv->tx_coal_frames = STMMAC_TX_FRAMES;
	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
	init_timer(&priv->txtimer);
	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
	priv->txtimer.data = (unsigned long)priv;
	priv->txtimer.function = stmmac_tx_timer;
	add_timer(&priv->txtimer);
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

1140
	clk_prepare_enable(priv->stmmac_clk);
1141 1142 1143

	stmmac_check_ether_addr(priv);

1144 1145 1146 1147 1148
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
1149 1150 1151 1152 1153 1154 1155 1156

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1157
	ret = stmmac_init_dma_engine(priv);
1158
	if (ret < 0) {
1159
		pr_err("%s: DMA initialization failed\n", __func__);
1160
		goto open_error;
1161 1162 1163
	}

	/* Copy the MAC addr into the HW  */
1164
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1165

1166
	/* If required, perform hw setup of the bus. */
1167 1168
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1169

1170
	/* Initialize the MAC Core */
1171
	priv->hw->mac->core_init(priv->ioaddr);
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	/* Request the Wake IRQ in case of another line is used for WoL */
	if (priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
			goto open_error_wolirq;
		}
	}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/* Request the IRQ lines */
	if (priv->lpi_irq != -ENXIO) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
				  dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
			       __func__, priv->lpi_irq, ret);
			goto open_error_lpiirq;
		}
	}

1204
	/* Enable the MAC Rx/Tx */
1205
	stmmac_set_mac(priv->ioaddr, true);
1206 1207 1208 1209 1210 1211 1212 1213

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1214
	stmmac_mmc_setup(priv);
1215

1216 1217 1218
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
1219
		pr_warning("%s: failed debugFS registration\n", __func__);
1220
#endif
1221 1222
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1223 1224
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1225 1226 1227

	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1228 1229
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1230 1231 1232 1233 1234
	}

	if (priv->phydev)
		phy_start(priv->phydev);

1235 1236 1237
	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
	priv->eee_enabled = stmmac_eee_init(priv);

1238 1239
	stmmac_init_tx_coalesce(priv);

1240 1241 1242 1243 1244
	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
		priv->rx_riwt = MAX_DMA_RIWT;
		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
	}

1245 1246
	napi_enable(&priv->napi);
	netif_start_queue(dev);
1247

1248
	return 0;
1249

1250 1251 1252 1253
open_error_lpiirq:
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);

1254 1255 1256
open_error_wolirq:
	free_irq(dev->irq, dev);

1257 1258 1259 1260
open_error:
	if (priv->phydev)
		phy_disconnect(priv->phydev);

1261
	clk_disable_unprepare(priv->stmmac_clk);
1262

1263
	return ret;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

1276 1277 1278
	if (priv->eee_enabled)
		del_timer_sync(&priv->eee_ctrl_timer);

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

	napi_disable(&priv->napi);

1290 1291
	del_timer_sync(&priv->txtimer);

1292 1293
	/* Free the IRQ lines */
	free_irq(dev->irq, dev);
1294 1295
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);
1296 1297
	if (priv->lpi_irq != -ENXIO)
		free_irq(priv->lpi_irq, dev);
1298 1299

	/* Stop TX/RX DMA and clear the descriptors */
1300 1301
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1302 1303 1304 1305

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1306
	/* Disable the MAC Rx/Tx */
1307
	stmmac_set_mac(priv->ioaddr, false);
1308 1309 1310

	netif_carrier_off(dev);

1311 1312 1313
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
1314
	clk_disable_unprepare(priv->stmmac_clk);
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
1330
	int i, csum_insertion = 0, is_jumbo = 0;
1331 1332
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1333
	unsigned int nopaged_len = skb_headlen(skb);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1345 1346
	spin_lock(&priv->tx_lock);

1347 1348 1349
	if (priv->tx_path_in_lpi_mode)
		stmmac_disable_eee_mode(priv);

1350 1351 1352 1353
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1354 1355 1356 1357 1358 1359 1360
		pr_debug("stmmac xmit: [entry %d]\n"
			 "\tskb addr %p - len: %d - nopaged_len: %d\n"
			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
			 "\ttx_count_frames %d\n", entry,
			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
			 !skb_is_gso(skb) ? "isn't" : "is",
			 priv->tx_count_frames);
1361 1362
#endif

1363
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1364

1365 1366 1367 1368 1369
	if (priv->extend_desc)
		desc = (struct dma_desc *) (priv->dma_etx + entry);
	else
		desc = priv->dma_tx + entry;

1370 1371 1372 1373
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1374 1375 1376
		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
			 "\t\tn_frags: %d, ip_summed: %d\n",
			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1377 1378
#endif
	priv->tx_skbuff[entry] = skb;
1379

1380 1381 1382 1383 1384 1385 1386
	/* To program the descriptors according to the size of the frame */
	if (priv->mode == STMMAC_RING_MODE) {
		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
							priv->plat->enh_desc);
		if (unlikely(is_jumbo))
			entry = priv->hw->ring->jumbo_frm(priv, skb,
							  csum_insertion);
1387
	} else {
1388 1389 1390 1391 1392 1393 1394
		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
							priv->plat->enh_desc);
		if (unlikely(is_jumbo))
			entry = priv->hw->chain->jumbo_frm(priv, skb,
							   csum_insertion);
	}
	if (likely(!is_jumbo)) {
1395 1396
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1397
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1398 1399
						csum_insertion, priv->mode);
	} else
1400
		desc = first;
1401 1402

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1403 1404
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1405 1406

		entry = (++priv->cur_tx) % txsize;
1407 1408 1409 1410
		if (priv->extend_desc)
			desc = (struct dma_desc *) (priv->dma_etx + entry);
		else
			desc = priv->dma_tx + entry;
1411 1412

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1413 1414
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1415
		priv->tx_skbuff[entry] = NULL;
1416 1417
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
						priv->mode);
1418
		wmb();
1419
		priv->hw->desc->set_tx_owner(desc);
1420
		wmb();
1421 1422
	}

1423
	/* Finalize the latest segment. */
1424
	priv->hw->desc->close_tx_desc(desc);
1425

1426
	wmb();
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	/* According to the coalesce parameter the IC bit for the latest
	 * segment could be reset and the timer re-started to invoke the
	 * stmmac_tx function. This approach takes care about the fragments.
	 */
	priv->tx_count_frames += nfrags + 1;
	if (priv->tx_coal_frames > priv->tx_count_frames) {
		priv->hw->desc->clear_tx_ic(desc);
		priv->xstats.tx_reset_ic_bit++;
		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
		       priv->tx_count_frames);
		mod_timer(&priv->txtimer,
			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
	} else
		priv->tx_count_frames = 0;
1441

1442
	/* To avoid raise condition */
1443
	priv->hw->desc->set_tx_owner(first);
1444
	wmb();
1445 1446 1447 1448 1449 1450 1451 1452 1453

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
1454 1455 1456 1457 1458
		if (priv->extend_desc)
			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
		else
			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1470 1471
	skb_tx_timestamp(skb);

1472 1473
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1474 1475
	spin_unlock(&priv->tx_lock);

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
1486 1487 1488 1489 1490 1491 1492
		struct dma_desc *p;

		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_erx + entry);
		else
			p = priv->dma_rx + entry;

1493 1494 1495
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

E
Eric Dumazet 已提交
1496
			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1497 1498 1499 1500 1501 1502 1503 1504 1505

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

1506
			p->des2 = priv->rx_skbuff_dma[entry];
1507

1508 1509
			if (unlikely((priv->mode == STMMAC_RING_MODE) &&
				     (priv->plat->has_gmac)))
1510
				priv->hw->ring->refill_desc3(bfsize, p);
1511

1512 1513
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1514
		wmb();
1515
		priv->hw->desc->set_rx_owner(p);
1516
		wmb();
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1530 1531 1532 1533
		if (priv->extend_desc)
			stmmac_display_ring((void *) priv->dma_erx, rxsize, 1);
		else
			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
1534 1535
	}
#endif
1536
	while (count < limit) {
1537
		int status;
1538
		struct dma_desc *p, *p_next;
1539

1540 1541 1542 1543 1544 1545
		if (priv->extend_desc)
			p = (struct dma_desc *) (priv->dma_erx + entry);
		else
			p = priv->dma_rx + entry ;

		if (priv->hw->desc->get_rx_owner(p))
1546 1547 1548 1549 1550
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
1551 1552 1553 1554 1555 1556
		if (priv->extend_desc)
			p_next = (struct dma_desc *) (priv->dma_erx +
						      next_entry);
		else
			p_next = priv->dma_rx + next_entry;

1557 1558 1559
		prefetch(p_next);

		/* read the status of the incoming frame */
1560 1561 1562 1563 1564 1565 1566
		status = priv->hw->desc->rx_status(&priv->dev->stats,
						   &priv->xstats, p);
		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
			priv->hw->desc->rx_extended_status(&priv->dev->stats,
							   &priv->xstats,
							   priv->dma_erx +
							   entry);
1567 1568 1569 1570
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1571
			int frame_len;
1572

1573 1574
			frame_len = priv->hw->desc->get_rx_frame_len(p,
					priv->plat->rx_coe);
1575 1576 1577 1578
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1610
			if (unlikely(!priv->plat->rx_coe))
1611
				skb_checksum_none_assert(skb);
1612
			else
1613
				skb->ip_summed = CHECKSUM_UNNECESSARY;
1614 1615

			napi_gro_receive(&priv->napi, skb);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
1636
 *  To look at the incoming frames and clear the tx resources.
1637 1638 1639 1640 1641 1642
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

1643 1644
	priv->xstats.napi_poll++;
	stmmac_tx_clean(priv);
1645

1646
	work_done = stmmac_rx(priv, budget);
1647 1648
	if (work_done < budget) {
		napi_complete(napi);
1649
		stmmac_enable_dma_irq(priv);
1650 1651 1652 1653 1654 1655 1656 1657
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
1658
 *   complete within a reasonable time. The driver will mark the error in the
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1694
 *  stmmac_set_rx_mode - entry point for multicast addressing
1695 1696 1697 1698 1699 1700 1701
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1702
static void stmmac_set_rx_mode(struct net_device *dev)
1703 1704 1705 1706
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1707
	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1732
	if (priv->plat->enh_desc)
1733 1734
		max_mtu = JUMBO_LEN;
	else
1735
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1736 1737 1738 1739 1740 1741

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1742 1743 1744 1745 1746 1747
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

1748 1749
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
1750 1751 1752
{
	struct stmmac_priv *priv = netdev_priv(dev);

1753
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1754
		features &= ~NETIF_F_RXCSUM;
1755 1756
	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
		features &= ~NETIF_F_IPV6_CSUM;
1757 1758 1759
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1760 1761 1762 1763
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1764 1765
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1766

1767
	return features;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1780 1781 1782
	/* To handle GMAC own interrupts */
	if (priv->plat->has_gmac) {
		int status = priv->hw->mac->host_irq_status((void __iomem *)
1783 1784
							    dev->base_addr,
							    &priv->xstats);
1785 1786
		if (unlikely(status)) {
			/* For LPI we need to save the tx status */
1787
			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
1788
				priv->tx_path_in_lpi_mode = true;
1789
			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
1790 1791 1792
				priv->tx_path_in_lpi_mode = false;
		}
	}
1793

1794
	/* To handle DMA interrupts */
1795
	stmmac_dma_interrupt(priv);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1824
	int ret;
1825 1826 1827 1828

	if (!netif_running(dev))
		return -EINVAL;

1829 1830 1831 1832 1833
	if (!priv->phydev)
		return -EINVAL;

	ret = phy_mii_ioctl(priv->phydev, rq, cmd);

1834 1835 1836
	return ret;
}

1837 1838 1839
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1840
static struct dentry *stmmac_dma_cap;
1841

1842 1843
static void sysfs_display_ring(void *head, int size, int extend_desc,
				struct seq_file *seq)
1844 1845
{
	int i;
1846 1847
	struct dma_extended_desc *ep = (struct dma_extended_desc *) head;
	struct dma_desc *p = (struct dma_desc *) head;
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	for (i = 0; i < size; i++) {
		u64 x;
		if (extend_desc) {
			x = *(u64 *) ep;
			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, (unsigned int) virt_to_phys(ep),
				   (unsigned int) x, (unsigned int) (x >> 32),
				   ep->basic.des2, ep->basic.des3);
			ep++;
		} else {
			x = *(u64 *) p;
			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, (unsigned int) virt_to_phys(ep),
				   (unsigned int) x, (unsigned int) (x >> 32),
				   p->des2, p->des3);
			p++;
		}
1866 1867
		seq_printf(seq, "\n");
	}
1868
}
1869

1870 1871 1872 1873 1874 1875
static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	if (priv->extend_desc) {
		seq_printf(seq, "Extended RX descriptor ring:\n");
		sysfs_display_ring((void *) priv->dma_erx, rxsize, 1, seq);
		seq_printf(seq, "Extended TX descriptor ring:\n");
		sysfs_display_ring((void *) priv->dma_etx, txsize, 1, seq);
	} else {
		seq_printf(seq, "RX descriptor ring:\n");
		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
		seq_printf(seq, "TX descriptor ring:\n");
		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
1902
	.release = single_release,
1903 1904
};

1905 1906 1907 1908 1909
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

1910
	if (!priv->hw_cap_support) {
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
1974
	.release = single_release,
1975 1976
};

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

2013 2014 2015 2016 2017 2018
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
2019
	debugfs_remove(stmmac_dma_cap);
2020 2021 2022 2023
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

2024 2025 2026 2027 2028
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
2029
	.ndo_fix_features = stmmac_fix_features,
2030
	.ndo_set_rx_mode = stmmac_set_rx_mode,
2031 2032 2033 2034 2035 2036 2037 2038 2039
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/**
 *  stmmac_hw_init - Init the MAC device
 *  @priv : pointer to the private device structure.
 *  Description: this function detects which MAC device
 *  (GMAC/MAC10-100) has to attached, checks the HW capability
 *  (if supported) and sets the driver's features (for example
 *  to use the ring or chaine mode or support the normal/enh
 *  descriptor structure).
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
2051
	int ret;
2052 2053 2054
	struct mac_device_info *mac;

	/* Identify the MAC HW device */
2055 2056
	if (priv->plat->has_gmac) {
		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2057
		mac = dwmac1000_setup(priv->ioaddr);
2058
	} else {
2059
		mac = dwmac100_setup(priv->ioaddr);
2060
	}
2061 2062 2063 2064 2065 2066
	if (!mac)
		return -ENOMEM;

	priv->hw = mac;

	/* Get and dump the chip ID */
2067
	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2068

2069 2070 2071
	/* To use alternate (extended) or normal descriptor structures */
	stmmac_selec_desc_mode(priv);

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	/* To use the chained or ring mode */
	if (chain_mode)	{
		priv->hw->chain = &chain_mode_ops;
		pr_info(" Chain mode enabled\n");
		priv->mode = STMMAC_CHAIN_MODE;
	} else {
		priv->hw->ring = &ring_mode_ops;
		pr_info(" Ring mode enabled\n");
		priv->mode = STMMAC_RING_MODE;
	}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
		pr_info(" DMA HW capability register supported");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2095 2096 2097 2098 2099 2100 2101 2102

		priv->plat->tx_coe = priv->dma_cap.tx_coe;

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

2103 2104 2105
	} else
		pr_info(" No HW DMA feature register supported");

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	/* Enable the IPC (Checksum Offload) and check if the feature has been
	 * enabled during the core configuration. */
	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
	if (!ret) {
		pr_warning(" RX IPC Checksum Offload not configured.\n");
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
	}

	if (priv->plat->rx_coe)
		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
			priv->plat->rx_coe);
2117 2118 2119 2120 2121 2122 2123 2124
	if (priv->plat->tx_coe)
		pr_info(" TX Checksum insertion supported\n");

	if (priv->plat->pmt) {
		pr_info(" Wake-Up On Lan supported\n");
		device_set_wakeup_capable(priv->device, 1);
	}

2125
	return 0;
2126 2127
}

2128
/**
2129 2130
 * stmmac_dvr_probe
 * @device: device pointer
2131 2132
 * @plat_dat: platform data pointer
 * @addr: iobase memory address
2133 2134
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
2135
 */
2136
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2137 2138
				     struct plat_stmmacenet_data *plat_dat,
				     void __iomem *addr)
2139 2140
{
	int ret = 0;
2141 2142
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
2143

2144
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2145
	if (!ndev)
2146 2147 2148 2149 2150 2151 2152
		return NULL;

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
2153

2154
	ether_setup(ndev);
2155

2156
	stmmac_set_ethtool_ops(ndev);
2157 2158 2159 2160 2161 2162 2163
	priv->pause = pause;
	priv->plat = plat_dat;
	priv->ioaddr = addr;
	priv->dev->base_addr = (unsigned long)addr;

	/* Verify driver arguments */
	stmmac_verify_args();
2164

2165 2166 2167 2168 2169 2170
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* Init MAC and get the capabilities */
2171 2172 2173
	ret = stmmac_hw_init(priv);
	if (ret)
		goto error_free_netdev;
2174 2175

	ndev->netdev_ops = &stmmac_netdev_ops;
2176

2177 2178
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
2179 2180
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2181 2182
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
2183
	ndev->features |= NETIF_F_HW_VLAN_RX;
2184 2185 2186 2187 2188 2189
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	/* Rx Watchdog is available in the COREs newer than the 3.40.
	 * In some case, for example on bugged HW this feature
	 * has to be disable and this can be done by passing the
	 * riwt_off field from the platform.
	 */
	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
		priv->use_riwt = 1;
		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
	}

2200
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2201

2202
	spin_lock_init(&priv->lock);
2203
	spin_lock_init(&priv->tx_lock);
2204

2205
	ret = register_netdev(ndev);
2206
	if (ret) {
2207
		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2208
		goto error_netdev_register;
2209 2210
	}

2211
	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2212
	if (IS_ERR(priv->stmmac_clk)) {
2213
		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2214 2215
		goto error_clk_get;
	}
2216

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
	if (!priv->plat->clk_csr)
		stmmac_clk_csr_set(priv);
	else
		priv->clk_csr = priv->plat->clk_csr;

2228 2229 2230 2231 2232
	/* MDIO bus Registration */
	ret = stmmac_mdio_register(ndev);
	if (ret < 0) {
		pr_debug("%s: MDIO bus (id: %d) registration failed",
			 __func__, priv->plat->bus_id);
2233
		goto error_mdio_register;
2234 2235
	}

2236
	return priv;
2237

2238 2239 2240
error_mdio_register:
	clk_put(priv->stmmac_clk);
error_clk_get:
2241
	unregister_netdev(ndev);
2242 2243
error_netdev_register:
	netif_napi_del(&priv->napi);
2244
error_free_netdev:
2245
	free_netdev(ndev);
2246

2247
	return NULL;
2248 2249 2250 2251
}

/**
 * stmmac_dvr_remove
2252
 * @ndev: net device pointer
2253
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2254
 * changes the link status, releases the DMA descriptor rings.
2255
 */
2256
int stmmac_dvr_remove(struct net_device *ndev)
2257
{
2258
	struct stmmac_priv *priv = netdev_priv(ndev);
2259 2260 2261

	pr_info("%s:\n\tremoving driver", __func__);

2262 2263
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
2264

2265
	stmmac_set_mac(priv->ioaddr, false);
2266
	stmmac_mdio_unregister(ndev);
2267 2268 2269 2270 2271 2272 2273 2274
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2275
int stmmac_suspend(struct net_device *ndev)
2276
{
2277
	struct stmmac_priv *priv = netdev_priv(ndev);
2278
	unsigned long flags;
2279

2280
	if (!ndev || !netif_running(ndev))
2281 2282
		return 0;

2283 2284 2285
	if (priv->phydev)
		phy_stop(priv->phydev);

2286
	spin_lock_irqsave(&priv->lock, flags);
2287

2288 2289
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2290

2291 2292 2293 2294 2295
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
2296 2297

	stmmac_clear_descriptors(priv);
2298 2299 2300 2301

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2302
	else {
2303
		stmmac_set_mac(priv->ioaddr, false);
2304
		/* Disable clock in case of PWM is off */
2305
		clk_disable_unprepare(priv->stmmac_clk);
2306
	}
2307
	spin_unlock_irqrestore(&priv->lock, flags);
2308 2309 2310
	return 0;
}

2311
int stmmac_resume(struct net_device *ndev)
2312
{
2313
	struct stmmac_priv *priv = netdev_priv(ndev);
2314
	unsigned long flags;
2315

2316
	if (!netif_running(ndev))
2317 2318
		return 0;

2319
	spin_lock_irqsave(&priv->lock, flags);
2320

2321 2322 2323 2324 2325
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2326
	if (device_may_wakeup(priv->device))
2327
		priv->hw->mac->pmt(priv->ioaddr, 0);
2328 2329
	else
		/* enable the clk prevously disabled */
2330
		clk_prepare_enable(priv->stmmac_clk);
2331

2332
	netif_device_attach(ndev);
2333 2334

	/* Enable the MAC and DMA */
2335
	stmmac_set_mac(priv->ioaddr, true);
2336 2337
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2338 2339 2340

	napi_enable(&priv->napi);

2341
	netif_start_queue(ndev);
2342

2343
	spin_unlock_irqrestore(&priv->lock, flags);
2344 2345 2346 2347

	if (priv->phydev)
		phy_start(priv->phydev);

2348 2349 2350
	return 0;
}

2351
int stmmac_freeze(struct net_device *ndev)
2352 2353 2354 2355 2356 2357 2358
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

2359
int stmmac_restore(struct net_device *ndev)
2360 2361 2362 2363 2364 2365 2366
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
2367

2368 2369 2370
/* Driver can be configured w/ and w/ both PCI and Platf drivers
 * depending on the configuration selected.
 */
2371 2372
static int __init stmmac_init(void)
{
2373
	int ret;
2374

2375 2376 2377 2378 2379 2380
	ret = stmmac_register_platform();
	if (ret)
		goto err;
	ret = stmmac_register_pci();
	if (ret)
		goto err_pci;
2381
	return 0;
2382 2383 2384 2385 2386
err_pci:
	stmmac_unregister_platform();
err:
	pr_err("stmmac: driver registration failed\n");
	return ret;
2387 2388 2389 2390
}

static void __exit stmmac_exit(void)
{
2391 2392
	stmmac_unregister_platform();
	stmmac_unregister_pci();
2393 2394 2395 2396 2397
}

module_init(stmmac_init);
module_exit(stmmac_exit);

2398 2399 2400 2401 2402 2403 2404 2405
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2406
		if (!strncmp(opt, "debug:", 6)) {
2407
			if (kstrtoint(opt + 6, 0, &debug))
2408 2409
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
2410
			if (kstrtoint(opt + 8, 0, &phyaddr))
2411 2412
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2413
			if (kstrtoint(opt + 11, 0, &dma_txsize))
2414 2415
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2416
			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2417 2418
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
2419
			if (kstrtoint(opt + 7, 0, &buf_sz))
2420 2421
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
2422
			if (kstrtoint(opt + 3, 0, &tc))
2423 2424
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
2425
			if (kstrtoint(opt + 9, 0, &watchdog))
2426 2427
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2428
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2429 2430
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
2431
			if (kstrtoint(opt + 6, 0, &pause))
2432
				goto err;
2433
		} else if (!strncmp(opt, "eee_timer:", 10)) {
2434 2435
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
2436 2437 2438
		} else if (!strncmp(opt, "chain_mode:", 11)) {
			if (kstrtoint(opt + 11, 0, &chain_mode))
				goto err;
2439
		}
2440 2441
	}
	return 0;
2442 2443 2444 2445

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2446 2447 2448 2449
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2450 2451 2452 2453

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");