omap-dma.c 40.4 KB
Newer Older
1 2 3 4 5 6 7
/*
 * OMAP DMAengine support
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
8
#include <linux/delay.h>
9 10
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
11
#include <linux/dmapool.h>
12 13 14 15 16 17 18 19 20
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/omap-dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
21 22
#include <linux/of_dma.h>
#include <linux/of_device.h>
23 24

#include "virt-dma.h"
25

26 27 28
#define OMAP_SDMA_REQUESTS	127
#define OMAP_SDMA_CHANNELS	32

29 30 31
struct omap_dmadev {
	struct dma_device ddev;
	spinlock_t lock;
32 33
	void __iomem *base;
	const struct omap_dma_reg *reg_map;
34
	struct omap_system_dma_plat_info *plat;
35
	bool legacy;
36 37
	bool ll123_supported;
	struct dma_pool *desc_pool;
38
	unsigned dma_requests;
39 40
	spinlock_t irq_lock;
	uint32_t irq_enable_mask;
41
	struct omap_chan **lch_map;
42 43 44 45
};

struct omap_chan {
	struct virt_dma_chan vc;
46 47
	void __iomem *channel_base;
	const struct omap_dma_reg *reg_map;
48
	uint32_t ccr;
49 50 51

	struct dma_slave_config	cfg;
	unsigned dma_sig;
52
	bool cyclic;
53
	bool paused;
54
	bool running;
55 56 57 58 59 60

	int dma_ch;
	struct omap_desc *desc;
	unsigned sgidx;
};

61 62 63 64 65 66 67 68 69 70 71 72 73
#define DESC_NXT_SV_REFRESH	(0x1 << 24)
#define DESC_NXT_SV_REUSE	(0x2 << 24)
#define DESC_NXT_DV_REFRESH	(0x1 << 26)
#define DESC_NXT_DV_REUSE	(0x2 << 26)
#define DESC_NTYPE_TYPE2	(0x2 << 29)

/* Type 2 descriptor with Source or Destination address update */
struct omap_type2_desc {
	uint32_t next_desc;
	uint32_t en;
	uint32_t addr; /* src or dst */
	uint16_t fn;
	uint16_t cicr;
74 75 76 77
	int16_t cdei;
	int16_t csei;
	int32_t cdfi;
	int32_t csfi;
78 79
} __packed;

80 81 82 83
struct omap_sg {
	dma_addr_t addr;
	uint32_t en;		/* number of elements (24-bit) */
	uint32_t fn;		/* number of frames (16-bit) */
84 85
	int32_t fi;		/* for double indexing */
	int16_t ei;		/* for double indexing */
86 87 88 89

	/* Linked list */
	struct omap_type2_desc *t2_desc;
	dma_addr_t t2_desc_paddr;
90 91 92 93
};

struct omap_desc {
	struct virt_dma_desc vd;
94
	bool using_ll;
95 96 97
	enum dma_transfer_direction dir;
	dma_addr_t dev_addr;

98 99
	int32_t fi;		/* for OMAP_DMA_SYNC_PACKET / double indexing */
	int16_t ei;		/* for double indexing */
100
	uint8_t es;		/* CSDP_DATA_TYPE_xxx */
101
	uint32_t ccr;		/* CCR value */
102
	uint16_t clnk_ctrl;	/* CLNK_CTRL value */
103
	uint16_t cicr;		/* CICR value */
104
	uint32_t csdp;		/* CSDP value */
105 106 107 108 109

	unsigned sglen;
	struct omap_sg sg[0];
};

110
enum {
111 112 113
	CAPS_0_SUPPORT_LL123	= BIT(20),	/* Linked List type1/2/3 */
	CAPS_0_SUPPORT_LL4	= BIT(21),	/* Linked List type4 */

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	CCR_FS			= BIT(5),
	CCR_READ_PRIORITY	= BIT(6),
	CCR_ENABLE		= BIT(7),
	CCR_AUTO_INIT		= BIT(8),	/* OMAP1 only */
	CCR_REPEAT		= BIT(9),	/* OMAP1 only */
	CCR_OMAP31_DISABLE	= BIT(10),	/* OMAP1 only */
	CCR_SUSPEND_SENSITIVE	= BIT(8),	/* OMAP2+ only */
	CCR_RD_ACTIVE		= BIT(9),	/* OMAP2+ only */
	CCR_WR_ACTIVE		= BIT(10),	/* OMAP2+ only */
	CCR_SRC_AMODE_CONSTANT	= 0 << 12,
	CCR_SRC_AMODE_POSTINC	= 1 << 12,
	CCR_SRC_AMODE_SGLIDX	= 2 << 12,
	CCR_SRC_AMODE_DBLIDX	= 3 << 12,
	CCR_DST_AMODE_CONSTANT	= 0 << 14,
	CCR_DST_AMODE_POSTINC	= 1 << 14,
	CCR_DST_AMODE_SGLIDX	= 2 << 14,
	CCR_DST_AMODE_DBLIDX	= 3 << 14,
	CCR_CONSTANT_FILL	= BIT(16),
	CCR_TRANSPARENT_COPY	= BIT(17),
	CCR_BS			= BIT(18),
	CCR_SUPERVISOR		= BIT(22),
	CCR_PREFETCH		= BIT(23),
	CCR_TRIGGER_SRC		= BIT(24),
	CCR_BUFFERING_DISABLE	= BIT(25),
	CCR_WRITE_PRIORITY	= BIT(26),
	CCR_SYNC_ELEMENT	= 0,
	CCR_SYNC_FRAME		= CCR_FS,
	CCR_SYNC_BLOCK		= CCR_BS,
	CCR_SYNC_PACKET		= CCR_BS | CCR_FS,

	CSDP_DATA_TYPE_8	= 0,
	CSDP_DATA_TYPE_16	= 1,
	CSDP_DATA_TYPE_32	= 2,
	CSDP_SRC_PORT_EMIFF	= 0 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_EMIFS	= 1 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_OCP_T1	= 2 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_TIPB	= 3 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_OCP_T2	= 4 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_MPUI	= 5 << 2, /* OMAP1 only */
	CSDP_SRC_PACKED		= BIT(6),
	CSDP_SRC_BURST_1	= 0 << 7,
	CSDP_SRC_BURST_16	= 1 << 7,
	CSDP_SRC_BURST_32	= 2 << 7,
	CSDP_SRC_BURST_64	= 3 << 7,
	CSDP_DST_PORT_EMIFF	= 0 << 9, /* OMAP1 only */
	CSDP_DST_PORT_EMIFS	= 1 << 9, /* OMAP1 only */
	CSDP_DST_PORT_OCP_T1	= 2 << 9, /* OMAP1 only */
	CSDP_DST_PORT_TIPB	= 3 << 9, /* OMAP1 only */
	CSDP_DST_PORT_OCP_T2	= 4 << 9, /* OMAP1 only */
	CSDP_DST_PORT_MPUI	= 5 << 9, /* OMAP1 only */
	CSDP_DST_PACKED		= BIT(13),
	CSDP_DST_BURST_1	= 0 << 14,
	CSDP_DST_BURST_16	= 1 << 14,
	CSDP_DST_BURST_32	= 2 << 14,
	CSDP_DST_BURST_64	= 3 << 14,
169 170 171
	CSDP_WRITE_NON_POSTED	= 0 << 16,
	CSDP_WRITE_POSTED	= 1 << 16,
	CSDP_WRITE_LAST_NON_POSTED = 2 << 16,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

	CICR_TOUT_IE		= BIT(0),	/* OMAP1 only */
	CICR_DROP_IE		= BIT(1),
	CICR_HALF_IE		= BIT(2),
	CICR_FRAME_IE		= BIT(3),
	CICR_LAST_IE		= BIT(4),
	CICR_BLOCK_IE		= BIT(5),
	CICR_PKT_IE		= BIT(7),	/* OMAP2+ only */
	CICR_TRANS_ERR_IE	= BIT(8),	/* OMAP2+ only */
	CICR_SUPERVISOR_ERR_IE	= BIT(10),	/* OMAP2+ only */
	CICR_MISALIGNED_ERR_IE	= BIT(11),	/* OMAP2+ only */
	CICR_DRAIN_IE		= BIT(12),	/* OMAP2+ only */
	CICR_SUPER_BLOCK_IE	= BIT(14),	/* OMAP2+ only */

	CLNK_CTRL_ENABLE_LNK	= BIT(15),
187 188 189 190 191 192 193 194 195 196 197 198 199

	CDP_DST_VALID_INC	= 0 << 0,
	CDP_DST_VALID_RELOAD	= 1 << 0,
	CDP_DST_VALID_REUSE	= 2 << 0,
	CDP_SRC_VALID_INC	= 0 << 2,
	CDP_SRC_VALID_RELOAD	= 1 << 2,
	CDP_SRC_VALID_REUSE	= 2 << 2,
	CDP_NTYPE_TYPE1		= 1 << 4,
	CDP_NTYPE_TYPE2		= 2 << 4,
	CDP_NTYPE_TYPE3		= 3 << 4,
	CDP_TMODE_NORMAL	= 0 << 8,
	CDP_TMODE_LLIST		= 1 << 8,
	CDP_FAST		= BIT(10),
200 201
};

202
static const unsigned es_bytes[] = {
203 204 205
	[CSDP_DATA_TYPE_8] = 1,
	[CSDP_DATA_TYPE_16] = 2,
	[CSDP_DATA_TYPE_32] = 4,
206 207
};

208 209 210 211
static struct of_dma_filter_info omap_dma_info = {
	.filter_fn = omap_dma_filter_fn,
};

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
{
	return container_of(d, struct omap_dmadev, ddev);
}

static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
{
	return container_of(c, struct omap_chan, vc.chan);
}

static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct omap_desc, vd.tx);
}

static void omap_dma_desc_free(struct virt_dma_desc *vd)
{
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	struct omap_desc *d = to_omap_dma_desc(&vd->tx);

	if (d->using_ll) {
		struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
		int i;

		for (i = 0; i < d->sglen; i++) {
			if (d->sg[i].t2_desc)
				dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
					      d->sg[i].t2_desc_paddr);
		}
	}

	kfree(d);
}

static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
				     enum dma_transfer_direction dir, bool last)
{
	struct omap_sg *sg = &d->sg[idx];
	struct omap_type2_desc *t2_desc = sg->t2_desc;

	if (idx)
		d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
	if (last)
		t2_desc->next_desc = 0xfffffffc;

	t2_desc->en = sg->en;
	t2_desc->addr = sg->addr;
	t2_desc->fn = sg->fn & 0xffff;
	t2_desc->cicr = d->cicr;
	if (!last)
		t2_desc->cicr &= ~CICR_BLOCK_IE;

	switch (dir) {
	case DMA_DEV_TO_MEM:
		t2_desc->cdei = sg->ei;
		t2_desc->csei = d->ei;
		t2_desc->cdfi = sg->fi;
		t2_desc->csfi = d->fi;

		t2_desc->en |= DESC_NXT_DV_REFRESH;
		t2_desc->en |= DESC_NXT_SV_REUSE;
		break;
	case DMA_MEM_TO_DEV:
		t2_desc->cdei = d->ei;
		t2_desc->csei = sg->ei;
		t2_desc->cdfi = d->fi;
		t2_desc->csfi = sg->fi;

		t2_desc->en |= DESC_NXT_SV_REFRESH;
		t2_desc->en |= DESC_NXT_DV_REUSE;
		break;
	default:
		return;
	}

	t2_desc->en |= DESC_NTYPE_TYPE2;
287 288
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
{
	switch (type) {
	case OMAP_DMA_REG_16BIT:
		writew_relaxed(val, addr);
		break;
	case OMAP_DMA_REG_2X16BIT:
		writew_relaxed(val, addr);
		writew_relaxed(val >> 16, addr + 2);
		break;
	case OMAP_DMA_REG_32BIT:
		writel_relaxed(val, addr);
		break;
	default:
		WARN_ON(1);
	}
}

static unsigned omap_dma_read(unsigned type, void __iomem *addr)
{
	unsigned val;

	switch (type) {
	case OMAP_DMA_REG_16BIT:
		val = readw_relaxed(addr);
		break;
	case OMAP_DMA_REG_2X16BIT:
		val = readw_relaxed(addr);
		val |= readw_relaxed(addr + 2) << 16;
		break;
	case OMAP_DMA_REG_32BIT:
		val = readl_relaxed(addr);
		break;
	default:
		WARN_ON(1);
		val = 0;
	}

	return val;
}

330 331
static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
{
332 333 334 335 336
	const struct omap_dma_reg *r = od->reg_map + reg;

	WARN_ON(r->stride);

	omap_dma_write(val, r->type, od->base + r->offset);
337 338 339 340
}

static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
{
341 342 343 344 345
	const struct omap_dma_reg *r = od->reg_map + reg;

	WARN_ON(r->stride);

	return omap_dma_read(r->type, od->base + r->offset);
346 347 348 349
}

static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
{
350 351 352
	const struct omap_dma_reg *r = c->reg_map + reg;

	omap_dma_write(val, r->type, c->channel_base + r->offset);
353 354 355 356
}

static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
{
357 358 359
	const struct omap_dma_reg *r = c->reg_map + reg;

	return omap_dma_read(r->type, c->channel_base + r->offset);
360 361
}

362 363 364
static void omap_dma_clear_csr(struct omap_chan *c)
{
	if (dma_omap1())
365
		omap_dma_chan_read(c, CSR);
366
	else
367
		omap_dma_chan_write(c, CSR, ~0);
368 369
}

370 371 372 373 374 375 376 377 378 379
static unsigned omap_dma_get_csr(struct omap_chan *c)
{
	unsigned val = omap_dma_chan_read(c, CSR);

	if (!dma_omap1())
		omap_dma_chan_write(c, CSR, val);

	return val;
}

380 381 382 383
static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
	unsigned lch)
{
	c->channel_base = od->base + od->plat->channel_stride * lch;
384 385

	od->lch_map[lch] = c;
386 387
}

388 389 390
static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
391
	uint16_t cicr = d->cicr;
392 393

	if (__dma_omap15xx(od->plat->dma_attr))
394
		omap_dma_chan_write(c, CPC, 0);
395
	else
396
		omap_dma_chan_write(c, CDAC, 0);
397

398
	omap_dma_clear_csr(c);
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	if (d->using_ll) {
		uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;

		if (d->dir == DMA_DEV_TO_MEM)
			cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
		else
			cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
		omap_dma_chan_write(c, CDP, cdp);

		omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
		omap_dma_chan_write(c, CCDN, 0);
		omap_dma_chan_write(c, CCFN, 0xffff);
		omap_dma_chan_write(c, CCEN, 0xffffff);

		cicr &= ~CICR_BLOCK_IE;
	} else if (od->ll123_supported) {
		omap_dma_chan_write(c, CDP, 0);
	}

419
	/* Enable interrupts */
420
	omap_dma_chan_write(c, CICR, cicr);
421

422
	/* Enable channel */
423
	omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
424 425

	c->running = true;
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static void omap_dma_drain_chan(struct omap_chan *c)
{
	int i;
	u32 val;

	/* Wait for sDMA FIFO to drain */
	for (i = 0; ; i++) {
		val = omap_dma_chan_read(c, CCR);
		if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
			break;

		if (i > 100)
			break;

		udelay(5);
	}

	if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
		dev_err(c->vc.chan.device->dev,
			"DMA drain did not complete on lch %d\n",
			c->dma_ch);
}

static int omap_dma_stop(struct omap_chan *c)
452 453 454 455 456
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	/* disable irq */
457
	omap_dma_chan_write(c, CICR, 0);
458

459
	omap_dma_clear_csr(c);
460

461
	val = omap_dma_chan_read(c, CCR);
462
	if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
463 464
		uint32_t sysconfig;

465
		sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
466 467
		val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
		val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
468
		omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
469

470
		val = omap_dma_chan_read(c, CCR);
471
		val &= ~CCR_ENABLE;
472
		omap_dma_chan_write(c, CCR, val);
473

474 475
		if (!(c->ccr & CCR_BUFFERING_DISABLE))
			omap_dma_drain_chan(c);
476

477
		omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
478
	} else {
479 480 481
		if (!(val & CCR_ENABLE))
			return -EINVAL;

482
		val &= ~CCR_ENABLE;
483
		omap_dma_chan_write(c, CCR, val);
484 485 486

		if (!(c->ccr & CCR_BUFFERING_DISABLE))
			omap_dma_drain_chan(c);
487 488 489 490 491
	}

	mb();

	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
492
		val = omap_dma_chan_read(c, CLNK_CTRL);
493 494 495 496

		if (dma_omap1())
			val |= 1 << 14; /* set the STOP_LNK bit */
		else
497
			val &= ~CLNK_CTRL_ENABLE_LNK;
498

499
		omap_dma_chan_write(c, CLNK_CTRL, val);
500
	}
501
	c->running = false;
502
	return 0;
503 504
}

505
static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
506
{
507
	struct omap_sg *sg = d->sg + c->sgidx;
508
	unsigned cxsa, cxei, cxfi;
509

510
	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
511 512 513
		cxsa = CDSA;
		cxei = CDEI;
		cxfi = CDFI;
514
	} else {
515 516 517
		cxsa = CSSA;
		cxei = CSEI;
		cxfi = CSFI;
518 519
	}

520
	omap_dma_chan_write(c, cxsa, sg->addr);
521 522
	omap_dma_chan_write(c, cxei, sg->ei);
	omap_dma_chan_write(c, cxfi, sg->fi);
523 524
	omap_dma_chan_write(c, CEN, sg->en);
	omap_dma_chan_write(c, CFN, sg->fn);
525

526
	omap_dma_start(c, d);
527
	c->sgidx++;
528 529 530 531 532 533
}

static void omap_dma_start_desc(struct omap_chan *c)
{
	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
	struct omap_desc *d;
534
	unsigned cxsa, cxei, cxfi;
535

536 537 538 539 540 541 542 543 544 545
	if (!vd) {
		c->desc = NULL;
		return;
	}

	list_del(&vd->node);

	c->desc = d = to_omap_dma_desc(&vd->tx);
	c->sgidx = 0;

546 547 548 549 550 551 552
	/*
	 * This provides the necessary barrier to ensure data held in
	 * DMA coherent memory is visible to the DMA engine prior to
	 * the transfer starting.
	 */
	mb();

553
	omap_dma_chan_write(c, CCR, d->ccr);
554
	if (dma_omap1())
555
		omap_dma_chan_write(c, CCR2, d->ccr >> 16);
556

557
	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
558 559 560
		cxsa = CSSA;
		cxei = CSEI;
		cxfi = CSFI;
561
	} else {
562 563 564
		cxsa = CDSA;
		cxei = CDEI;
		cxfi = CDFI;
565 566
	}

567
	omap_dma_chan_write(c, cxsa, d->dev_addr);
568
	omap_dma_chan_write(c, cxei, d->ei);
569 570 571
	omap_dma_chan_write(c, cxfi, d->fi);
	omap_dma_chan_write(c, CSDP, d->csdp);
	omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
572

573
	omap_dma_start_sg(c, d);
574 575 576 577 578 579 580 581 582 583 584
}

static void omap_dma_callback(int ch, u16 status, void *data)
{
	struct omap_chan *c = data;
	struct omap_desc *d;
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	d = c->desc;
	if (d) {
585
		if (c->cyclic) {
586
			vchan_cyclic_callback(&d->vd);
587
		} else if (d->using_ll || c->sgidx == d->sglen) {
588 589 590 591
			omap_dma_start_desc(c);
			vchan_cookie_complete(&d->vd);
		} else {
			omap_dma_start_sg(c, d);
592 593 594 595 596
		}
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
static irqreturn_t omap_dma_irq(int irq, void *devid)
{
	struct omap_dmadev *od = devid;
	unsigned status, channel;

	spin_lock(&od->irq_lock);

	status = omap_dma_glbl_read(od, IRQSTATUS_L1);
	status &= od->irq_enable_mask;
	if (status == 0) {
		spin_unlock(&od->irq_lock);
		return IRQ_NONE;
	}

	while ((channel = ffs(status)) != 0) {
		unsigned mask, csr;
		struct omap_chan *c;

		channel -= 1;
		mask = BIT(channel);
		status &= ~mask;

		c = od->lch_map[channel];
		if (c == NULL) {
			/* This should never happen */
			dev_err(od->ddev.dev, "invalid channel %u\n", channel);
			continue;
		}

		csr = omap_dma_get_csr(c);
		omap_dma_glbl_write(od, IRQSTATUS_L1, mask);

		omap_dma_callback(channel, csr, c);
	}

	spin_unlock(&od->irq_lock);

	return IRQ_HANDLED;
}

637 638
static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
{
639
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
640
	struct omap_chan *c = to_omap_dma_chan(chan);
641
	struct device *dev = od->ddev.dev;
642 643
	int ret;

644 645 646 647 648 649 650
	if (od->legacy) {
		ret = omap_request_dma(c->dma_sig, "DMA engine",
				       omap_dma_callback, c, &c->dma_ch);
	} else {
		ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
				       &c->dma_ch);
	}
651

652
	dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
653

654
	if (ret >= 0) {
655 656
		omap_dma_assign(od, c, c->dma_ch);

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		if (!od->legacy) {
			unsigned val;

			spin_lock_irq(&od->irq_lock);
			val = BIT(c->dma_ch);
			omap_dma_glbl_write(od, IRQSTATUS_L1, val);
			od->irq_enable_mask |= val;
			omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);

			val = omap_dma_glbl_read(od, IRQENABLE_L0);
			val &= ~BIT(c->dma_ch);
			omap_dma_glbl_write(od, IRQENABLE_L0, val);
			spin_unlock_irq(&od->irq_lock);
		}
	}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	if (dma_omap1()) {
		if (__dma_omap16xx(od->plat->dma_attr)) {
			c->ccr = CCR_OMAP31_DISABLE;
			/* Duplicate what plat-omap/dma.c does */
			c->ccr |= c->dma_ch + 1;
		} else {
			c->ccr = c->dma_sig & 0x1f;
		}
	} else {
		c->ccr = c->dma_sig & 0x1f;
		c->ccr |= (c->dma_sig & ~0x1f) << 14;
	}
	if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
		c->ccr |= CCR_BUFFERING_DISABLE;

688
	return ret;
689 690 691 692
}

static void omap_dma_free_chan_resources(struct dma_chan *chan)
{
693
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
694 695
	struct omap_chan *c = to_omap_dma_chan(chan);

696 697 698 699 700 701 702
	if (!od->legacy) {
		spin_lock_irq(&od->irq_lock);
		od->irq_enable_mask &= ~BIT(c->dma_ch);
		omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
		spin_unlock_irq(&od->irq_lock);
	}

703
	c->channel_base = NULL;
704
	od->lch_map[c->dma_ch] = NULL;
705 706 707
	vchan_free_chan_resources(&c->vc);
	omap_free_dma(c->dma_ch);

708 709
	dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
		c->dma_sig);
710
	c->dma_sig = 0;
711 712
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static size_t omap_dma_sg_size(struct omap_sg *sg)
{
	return sg->en * sg->fn;
}

static size_t omap_dma_desc_size(struct omap_desc *d)
{
	unsigned i;
	size_t size;

	for (size = i = 0; i < d->sglen; i++)
		size += omap_dma_sg_size(&d->sg[i]);

	return size * es_bytes[d->es];
}

static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
{
	unsigned i;
	size_t size, es_size = es_bytes[d->es];

	for (size = i = 0; i < d->sglen; i++) {
		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;

		if (size)
			size += this_size;
		else if (addr >= d->sg[i].addr &&
			 addr < d->sg[i].addr + this_size)
			size += d->sg[i].addr + this_size - addr;
	}
	return size;
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
 * read before the DMA controller finished disabling the channel.
 */
static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	val = omap_dma_chan_read(c, reg);
	if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
		val = omap_dma_chan_read(c, reg);

	return val;
}

762 763 764
static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
765
	dma_addr_t addr, cdac;
766

767
	if (__dma_omap15xx(od->plat->dma_attr)) {
768
		addr = omap_dma_chan_read(c, CPC);
769 770 771
	} else {
		addr = omap_dma_chan_read_3_3(c, CSAC);
		cdac = omap_dma_chan_read_3_3(c, CDAC);
772 773 774 775 776 777

		/*
		 * CDAC == 0 indicates that the DMA transfer on the channel has
		 * not been started (no data has been transferred so far).
		 * Return the programmed source start address in this case.
		 */
778
		if (cdac == 0)
779
			addr = omap_dma_chan_read(c, CSSA);
780 781 782
	}

	if (dma_omap1())
783
		addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
784 785 786 787 788 789 790 791 792

	return addr;
}

static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	dma_addr_t addr;

793
	if (__dma_omap15xx(od->plat->dma_attr)) {
794
		addr = omap_dma_chan_read(c, CPC);
795 796
	} else {
		addr = omap_dma_chan_read_3_3(c, CDAC);
797 798

		/*
799 800 801 802
		 * CDAC == 0 indicates that the DMA transfer on the channel
		 * has not been started (no data has been transferred so
		 * far).  Return the programmed destination start address in
		 * this case.
803 804
		 */
		if (addr == 0)
805
			addr = omap_dma_chan_read(c, CDSA);
806 807 808
	}

	if (dma_omap1())
809
		addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
810 811 812 813

	return addr;
}

814 815 816
static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
	dma_cookie_t cookie, struct dma_tx_state *txstate)
{
817 818 819 820 821 822
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
823 824 825 826 827 828 829 830 831 832 833

	if (!c->paused && c->running) {
		uint32_t ccr = omap_dma_chan_read(c, CCR);
		/*
		 * The channel is no longer active, set the return value
		 * accordingly
		 */
		if (!(ccr & CCR_ENABLE))
			ret = DMA_COMPLETE;
	}

834
	if (ret == DMA_COMPLETE || !txstate)
835 836 837 838 839 840 841 842 843 844 845
		return ret;

	spin_lock_irqsave(&c->vc.lock, flags);
	vd = vchan_find_desc(&c->vc, cookie);
	if (vd) {
		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
		struct omap_desc *d = c->desc;
		dma_addr_t pos;

		if (d->dir == DMA_MEM_TO_DEV)
846
			pos = omap_dma_get_src_pos(c);
847
		else if (d->dir == DMA_DEV_TO_MEM  || d->dir == DMA_MEM_TO_MEM)
848
			pos = omap_dma_get_dst_pos(c);
849 850 851 852 853 854 855
		else
			pos = 0;

		txstate->residue = omap_dma_desc_size_pos(d, pos);
	} else {
		txstate->residue = 0;
	}
856 857
	if (ret == DMA_IN_PROGRESS && c->paused)
		ret = DMA_PAUSED;
858 859 860
	spin_unlock_irqrestore(&c->vc.lock, flags);

	return ret;
861 862 863 864 865 866 867 868
}

static void omap_dma_issue_pending(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
869 870
	if (vchan_issue_pending(&c->vc) && !c->desc)
		omap_dma_start_desc(c);
871 872 873 874 875 876 877
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
{
878
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
879 880 881 882 883
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct scatterlist *sgent;
	struct omap_desc *d;
	dma_addr_t dev_addr;
884
	unsigned i, es, en, frame_bytes;
885
	bool ll_failed = false;
886
	u32 burst;
887
	u32 port_window, port_window_bytes;
888 889 890 891 892

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
893
		port_window = c->cfg.src_port_window_size;
894 895 896 897
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
898
		port_window = c->cfg.dst_port_window_size;
899 900 901 902 903 904 905 906
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
907
		es = CSDP_DATA_TYPE_8;
908 909
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
910
		es = CSDP_DATA_TYPE_16;
911 912
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
913
		es = CSDP_DATA_TYPE_32;
914 915 916 917 918
		break;
	default: /* not reached */
		return NULL;
	}

919 920 921 922 923 924
	/* When the port_window is used, one frame must cover the window */
	if (port_window) {
		burst = port_window;
		port_window_bytes = port_window * es_bytes[es];
	}

925 926 927 928 929 930 931 932
	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->es = es;
933

934
	d->ccr = c->ccr | CCR_SYNC_FRAME;
935 936
	if (dir == DMA_DEV_TO_MEM) {
		d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

		d->ccr |= CCR_DST_AMODE_POSTINC;
		if (port_window) {
			d->ccr |= CCR_SRC_AMODE_DBLIDX;
			d->ei = 1;
			/*
			 * One frame covers the port_window and by  configure
			 * the source frame index to be -1 * (port_window - 1)
			 * we instruct the sDMA that after a frame is processed
			 * it should move back to the start of the window.
			 */
			d->fi = -(port_window_bytes - 1);

			if (port_window_bytes >= 64)
				d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
			else if (port_window_bytes >= 32)
				d->csdp = CSDP_SRC_BURST_32 | CSDP_SRC_PACKED;
			else if (port_window_bytes >= 16)
				d->csdp = CSDP_SRC_BURST_16 | CSDP_SRC_PACKED;
		} else {
			d->ccr |= CCR_SRC_AMODE_CONSTANT;
		}
959 960
	} else {
		d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
961 962 963 964 965 966 967 968 969 970 971 972 973 974

		d->ccr |= CCR_SRC_AMODE_POSTINC;
		if (port_window) {
			d->ccr |= CCR_DST_AMODE_DBLIDX;

			if (port_window_bytes >= 64)
				d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
			else if (port_window_bytes >= 32)
				d->csdp = CSDP_DST_BURST_32 | CSDP_DST_PACKED;
			else if (port_window_bytes >= 16)
				d->csdp = CSDP_DST_BURST_16 | CSDP_DST_PACKED;
		} else {
			d->ccr |= CCR_DST_AMODE_CONSTANT;
		}
975
	}
976

977
	d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
978
	d->csdp |= es;
979

980
	if (dma_omap1()) {
981
		d->cicr |= CICR_TOUT_IE;
982 983

		if (dir == DMA_DEV_TO_MEM)
984
			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
985
		else
986
			d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
987
	} else {
988
		if (dir == DMA_DEV_TO_MEM)
989
			d->ccr |= CCR_TRIGGER_SRC;
990

991
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
992 993 994

		if (port_window)
			d->csdp |= CSDP_WRITE_LAST_NON_POSTED;
995
	}
996 997
	if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
		d->clnk_ctrl = c->dma_ch;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	/*
	 * Build our scatterlist entries: each contains the address,
	 * the number of elements (EN) in each frame, and the number of
	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
	 *
	 * Burst size translates to number of elements with frame sync.
	 * Note: DMA engine defines burst to be the number of dev-width
	 * transfers.
	 */
	en = burst;
	frame_bytes = es_bytes[es] * en;
1010 1011 1012 1013

	if (sglen >= 2)
		d->using_ll = od->ll123_supported;

1014
	for_each_sg(sgl, sgent, sglen, i) {
1015 1016 1017 1018 1019
		struct omap_sg *osg = &d->sg[i];

		osg->addr = sg_dma_address(sgent);
		osg->en = en;
		osg->fn = sg_dma_len(sgent) / frame_bytes;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		if (port_window && dir == DMA_MEM_TO_DEV) {
			osg->ei = 1;
			/*
			 * One frame covers the port_window and by  configure
			 * the source frame index to be -1 * (port_window - 1)
			 * we instruct the sDMA that after a frame is processed
			 * it should move back to the start of the window.
			 */
			osg->fi = -(port_window_bytes - 1);
		}
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

		if (d->using_ll) {
			osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
						      &osg->t2_desc_paddr);
			if (!osg->t2_desc) {
				dev_err(chan->device->dev,
					"t2_desc[%d] allocation failed\n", i);
				ll_failed = true;
				d->using_ll = false;
				continue;
			}

			omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
		}
1044 1045
	}

1046
	d->sglen = sglen;
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/* Release the dma_pool entries if one allocation failed */
	if (ll_failed) {
		for (i = 0; i < d->sglen; i++) {
			struct omap_sg *osg = &d->sg[i];

			if (osg->t2_desc) {
				dma_pool_free(od->desc_pool, osg->t2_desc,
					      osg->t2_desc_paddr);
				osg->t2_desc = NULL;
			}
		}
	}

1061 1062 1063
	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

1064 1065
static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1066
	size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
1067
{
1068
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1069 1070 1071 1072
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct omap_desc *d;
	dma_addr_t dev_addr;
1073
	unsigned es;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1092
		es = CSDP_DATA_TYPE_8;
1093 1094
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1095
		es = CSDP_DATA_TYPE_16;
1096 1097
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1098
		es = CSDP_DATA_TYPE_32;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->fi = burst;
	d->es = es;
	d->sg[0].addr = buf_addr;
	d->sg[0].en = period_len / es_bytes[es];
	d->sg[0].fn = buf_len / period_len;
	d->sglen = 1;
1117

1118
	d->ccr = c->ccr;
1119
	if (dir == DMA_DEV_TO_MEM)
1120
		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
1121
	else
1122
		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
1123

1124
	d->cicr = CICR_DROP_IE;
1125
	if (flags & DMA_PREP_INTERRUPT)
1126
		d->cicr |= CICR_FRAME_IE;
1127

1128 1129 1130
	d->csdp = es;

	if (dma_omap1()) {
1131
		d->cicr |= CICR_TOUT_IE;
1132 1133

		if (dir == DMA_DEV_TO_MEM)
1134
			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
1135
		else
1136
			d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
1137
	} else {
1138
		if (burst)
1139 1140 1141
			d->ccr |= CCR_SYNC_PACKET;
		else
			d->ccr |= CCR_SYNC_ELEMENT;
1142

1143
		if (dir == DMA_DEV_TO_MEM) {
1144
			d->ccr |= CCR_TRIGGER_SRC;
1145 1146 1147 1148
			d->csdp |= CSDP_DST_PACKED;
		} else {
			d->csdp |= CSDP_SRC_PACKED;
		}
1149

1150
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1151

1152
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1153 1154
	}

1155 1156 1157 1158 1159
	if (__dma_omap15xx(od->plat->dma_attr))
		d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
	else
		d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;

1160
	c->cyclic = true;
1161

1162
	return vchan_tx_prep(&c->vc, &d->vd, flags);
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct omap_desc *d;
	uint8_t data_type;

	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	data_type = __ffs((src | dest | len));
	if (data_type > CSDP_DATA_TYPE_32)
		data_type = CSDP_DATA_TYPE_32;

	d->dir = DMA_MEM_TO_MEM;
	d->dev_addr = src;
	d->fi = 0;
	d->es = data_type;
	d->sg[0].en = len / BIT(data_type);
	d->sg[0].fn = 1;
	d->sg[0].addr = dest;
	d->sglen = 1;
	d->ccr = c->ccr;
	d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;

1192
	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	d->csdp = data_type;

	if (dma_omap1()) {
		d->cicr |= CICR_TOUT_IE;
		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
	} else {
		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
	}

	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
	struct dma_chan *chan, struct dma_interleaved_template *xt,
	unsigned long flags)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct omap_desc *d;
	struct omap_sg *sg;
	uint8_t data_type;
	size_t src_icg, dst_icg;

	/* Slave mode is not supported */
	if (is_slave_direction(xt->dir))
		return NULL;

	if (xt->frame_size != 1 || xt->numf == 0)
		return NULL;

	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
	if (data_type > CSDP_DATA_TYPE_32)
		data_type = CSDP_DATA_TYPE_32;

	sg = &d->sg[0];
	d->dir = DMA_MEM_TO_MEM;
	d->dev_addr = xt->src_start;
	d->es = data_type;
	sg->en = xt->sgl[0].size / BIT(data_type);
	sg->fn = xt->numf;
	sg->addr = xt->dst_start;
	d->sglen = 1;
	d->ccr = c->ccr;

	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
	if (src_icg) {
		d->ccr |= CCR_SRC_AMODE_DBLIDX;
		d->ei = 1;
		d->fi = src_icg;
	} else if (xt->src_inc) {
		d->ccr |= CCR_SRC_AMODE_POSTINC;
		d->fi = 0;
	} else {
		dev_err(chan->device->dev,
			"%s: SRC constant addressing is not supported\n",
			__func__);
		kfree(d);
		return NULL;
	}

	if (dst_icg) {
		d->ccr |= CCR_DST_AMODE_DBLIDX;
		sg->ei = 1;
		sg->fi = dst_icg;
	} else if (xt->dst_inc) {
		d->ccr |= CCR_DST_AMODE_POSTINC;
		sg->fi = 0;
	} else {
		dev_err(chan->device->dev,
			"%s: DST constant addressing is not supported\n",
			__func__);
		kfree(d);
		return NULL;
	}

	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;

	d->csdp = data_type;

	if (dma_omap1()) {
		d->cicr |= CICR_TOUT_IE;
		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
	} else {
		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
	}

	return vchan_tx_prep(&c->vc, &d->vd, flags);
}

1291
static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
1292
{
1293 1294
	struct omap_chan *c = to_omap_dma_chan(chan);

1295 1296 1297 1298 1299 1300 1301 1302 1303
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
		return -EINVAL;

	memcpy(&c->cfg, cfg, sizeof(c->cfg));

	return 0;
}

1304
static int omap_dma_terminate_all(struct dma_chan *chan)
1305
{
1306
	struct omap_chan *c = to_omap_dma_chan(chan);
1307 1308 1309 1310 1311 1312 1313
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&c->vc.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
1314
	 * after omap_dma_stop() returns (even if it does, it will see
1315 1316 1317
	 * c->desc is NULL and exit.)
	 */
	if (c->desc) {
1318
		omap_dma_desc_free(&c->desc->vd);
1319
		c->desc = NULL;
1320 1321
		/* Avoid stopping the dma twice */
		if (!c->paused)
1322
			omap_dma_stop(c);
1323 1324
	}

1325 1326
	c->cyclic = false;
	c->paused = false;
1327

1328 1329 1330 1331 1332 1333 1334
	vchan_get_all_descriptors(&c->vc, &head);
	spin_unlock_irqrestore(&c->vc.lock, flags);
	vchan_dma_desc_free_list(&c->vc, &head);

	return 0;
}

1335 1336 1337 1338 1339 1340 1341
static void omap_dma_synchronize(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);

	vchan_synchronize(&c->vc);
}

1342
static int omap_dma_pause(struct dma_chan *chan)
1343
{
1344
	struct omap_chan *c = to_omap_dma_chan(chan);
1345 1346 1347
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
	unsigned long flags;
	int ret = -EINVAL;
1348
	bool can_pause = false;
1349

1350
	spin_lock_irqsave(&od->irq_lock, flags);
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (!c->desc)
		goto out;

	if (c->cyclic)
		can_pause = true;

	/*
	 * We do not allow DMA_MEM_TO_DEV transfers to be paused.
	 * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer:
	 * "When a channel is disabled during a transfer, the channel undergoes
	 * an abort, unless it is hardware-source-synchronized …".
	 * A source-synchronised channel is one where the fetching of data is
	 * under control of the device. In other words, a device-to-memory
	 * transfer. So, a destination-synchronised channel (which would be a
	 * memory-to-device transfer) undergoes an abort if the the CCR_ENABLE
	 * bit is cleared.
	 * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel
	 * aborts immediately after completion of current read/write
	 * transactions and then the FIFO is cleaned up." The term "cleaned up"
	 * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE
	 * are both clear _before_ disabling the channel, otherwise data loss
	 * will occur.
	 * The problem is that if the channel is active, then device activity
	 * can result in DMA activity starting between reading those as both
	 * clear and the write to DMA_CCR to clear the enable bit hitting the
	 * hardware. If the DMA hardware can't drain the data in its FIFO to the
	 * destination, then data loss "might" occur (say if we write to an UART
	 * and the UART is not accepting any further data).
	 */
	else if (c->desc->dir == DMA_DEV_TO_MEM)
		can_pause = true;

	if (can_pause && !c->paused) {
		ret = omap_dma_stop(c);
		if (!ret)
			c->paused = true;
1388
	}
1389 1390
out:
	spin_unlock_irqrestore(&od->irq_lock, flags);
1391

1392
	return ret;
1393 1394
}

1395
static int omap_dma_resume(struct dma_chan *chan)
1396
{
1397
	struct omap_chan *c = to_omap_dma_chan(chan);
1398 1399 1400
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
	unsigned long flags;
	int ret = -EINVAL;
1401

1402
	spin_lock_irqsave(&od->irq_lock, flags);
1403

1404
	if (c->paused && c->desc) {
1405 1406
		mb();

1407 1408 1409
		/* Restore channel link register */
		omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);

1410
		omap_dma_start(c, c->desc);
1411
		c->paused = false;
1412
		ret = 0;
1413
	}
1414
	spin_unlock_irqrestore(&od->irq_lock, flags);
1415

1416
	return ret;
1417 1418
}

1419
static int omap_dma_chan_init(struct omap_dmadev *od)
1420 1421 1422 1423 1424 1425 1426
{
	struct omap_chan *c;

	c = kzalloc(sizeof(*c), GFP_KERNEL);
	if (!c)
		return -ENOMEM;

1427
	c->reg_map = od->reg_map;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	c->vc.desc_free = omap_dma_desc_free;
	vchan_init(&c->vc, &od->ddev);

	return 0;
}

static void omap_dma_free(struct omap_dmadev *od)
{
	while (!list_empty(&od->ddev.channels)) {
		struct omap_chan *c = list_first_entry(&od->ddev.channels,
			struct omap_chan, vc.chan.device_node);

		list_del(&c->vc.chan.device_node);
		tasklet_kill(&c->vc.task);
		kfree(c);
	}
}

1446 1447 1448 1449
#define OMAP_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1450 1451 1452
static int omap_dma_probe(struct platform_device *pdev)
{
	struct omap_dmadev *od;
1453
	struct resource *res;
1454
	int rc, i, irq;
1455

1456
	od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1457 1458 1459
	if (!od)
		return -ENOMEM;

1460 1461 1462 1463 1464
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	od->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(od->base))
		return PTR_ERR(od->base);

1465 1466 1467 1468
	od->plat = omap_get_plat_info();
	if (!od->plat)
		return -EPROBE_DEFER;

1469 1470
	od->reg_map = od->plat->reg_map;

1471
	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1472
	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1473
	dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1474
	dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
1475 1476 1477 1478 1479
	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
	od->ddev.device_tx_status = omap_dma_tx_status;
	od->ddev.device_issue_pending = omap_dma_issue_pending;
	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1480
	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1481
	od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1482
	od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
1483
	od->ddev.device_config = omap_dma_slave_config;
1484 1485 1486
	od->ddev.device_pause = omap_dma_pause;
	od->ddev.device_resume = omap_dma_resume;
	od->ddev.device_terminate_all = omap_dma_terminate_all;
1487
	od->ddev.device_synchronize = omap_dma_synchronize;
1488 1489 1490 1491
	od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
	od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
	od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1492 1493 1494
	od->ddev.dev = &pdev->dev;
	INIT_LIST_HEAD(&od->ddev.channels);
	spin_lock_init(&od->lock);
1495
	spin_lock_init(&od->irq_lock);
1496

1497 1498 1499 1500 1501 1502
	if (!pdev->dev.of_node) {
		od->dma_requests = od->plat->dma_attr->lch_count;
		if (unlikely(!od->dma_requests))
			od->dma_requests = OMAP_SDMA_REQUESTS;
	} else if (of_property_read_u32(pdev->dev.of_node, "dma-requests",
					&od->dma_requests)) {
1503 1504 1505
		dev_info(&pdev->dev,
			 "Missing dma-requests property, using %u.\n",
			 OMAP_SDMA_REQUESTS);
1506
		od->dma_requests = OMAP_SDMA_REQUESTS;
1507 1508
	}

1509 1510 1511 1512 1513 1514
	od->lch_map = devm_kcalloc(&pdev->dev, od->dma_requests,
				   sizeof(*od->lch_map), GFP_KERNEL);
	if (!od->lch_map)
		return -ENOMEM;

	for (i = 0; i < od->dma_requests; i++) {
1515
		rc = omap_dma_chan_init(od);
1516 1517 1518 1519 1520 1521
		if (rc) {
			omap_dma_free(od);
			return rc;
		}
	}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	irq = platform_get_irq(pdev, 1);
	if (irq <= 0) {
		dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
		od->legacy = true;
	} else {
		/* Disable all interrupts */
		od->irq_enable_mask = 0;
		omap_dma_glbl_write(od, IRQENABLE_L1, 0);

		rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
				      IRQF_SHARED, "omap-dma-engine", od);
		if (rc)
			return rc;
	}

1537 1538 1539
	if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
		od->ll123_supported = true;

1540 1541 1542 1543
	od->ddev.filter.map = od->plat->slave_map;
	od->ddev.filter.mapcnt = od->plat->slavecnt;
	od->ddev.filter.fn = omap_dma_filter_fn;

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	if (od->ll123_supported) {
		od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
						&pdev->dev,
						sizeof(struct omap_type2_desc),
						4, 0);
		if (!od->desc_pool) {
			dev_err(&pdev->dev,
				"unable to allocate descriptor pool\n");
			od->ll123_supported = false;
		}
	}

1556 1557 1558 1559 1560
	rc = dma_async_device_register(&od->ddev);
	if (rc) {
		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
			rc);
		omap_dma_free(od);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		return rc;
	}

	platform_set_drvdata(pdev, od);

	if (pdev->dev.of_node) {
		omap_dma_info.dma_cap = od->ddev.cap_mask;

		/* Device-tree DMA controller registration */
		rc = of_dma_controller_register(pdev->dev.of_node,
				of_dma_simple_xlate, &omap_dma_info);
		if (rc) {
			pr_warn("OMAP-DMA: failed to register DMA controller\n");
			dma_async_device_unregister(&od->ddev);
			omap_dma_free(od);
		}
1577 1578
	}

1579 1580
	dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
		 od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
1581 1582 1583 1584 1585 1586 1587

	return rc;
}

static int omap_dma_remove(struct platform_device *pdev)
{
	struct omap_dmadev *od = platform_get_drvdata(pdev);
1588
	int irq;
1589

1590 1591 1592
	if (pdev->dev.of_node)
		of_dma_controller_free(pdev->dev.of_node);

1593 1594 1595
	irq = platform_get_irq(pdev, 1);
	devm_free_irq(&pdev->dev, irq, od);

1596
	dma_async_device_unregister(&od->ddev);
1597 1598 1599 1600 1601 1602

	if (!od->legacy) {
		/* Disable all interrupts */
		omap_dma_glbl_write(od, IRQENABLE_L0, 0);
	}

1603 1604 1605
	if (od->ll123_supported)
		dma_pool_destroy(od->desc_pool);

1606 1607 1608 1609 1610
	omap_dma_free(od);

	return 0;
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static const struct of_device_id omap_dma_match[] = {
	{ .compatible = "ti,omap2420-sdma", },
	{ .compatible = "ti,omap2430-sdma", },
	{ .compatible = "ti,omap3430-sdma", },
	{ .compatible = "ti,omap3630-sdma", },
	{ .compatible = "ti,omap4430-sdma", },
	{},
};
MODULE_DEVICE_TABLE(of, omap_dma_match);

1621 1622 1623 1624 1625
static struct platform_driver omap_dma_driver = {
	.probe	= omap_dma_probe,
	.remove	= omap_dma_remove,
	.driver = {
		.name = "omap-dma-engine",
1626
		.of_match_table = of_match_ptr(omap_dma_match),
1627 1628 1629 1630 1631 1632
	},
};

bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &omap_dma_driver.driver) {
1633
		struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1634 1635 1636
		struct omap_chan *c = to_omap_dma_chan(chan);
		unsigned req = *(unsigned *)param;

1637 1638 1639 1640
		if (req <= od->dma_requests) {
			c->dma_sig = req;
			return true;
		}
1641 1642 1643 1644 1645 1646 1647
	}
	return false;
}
EXPORT_SYMBOL_GPL(omap_dma_filter_fn);

static int omap_dma_init(void)
{
1648
	return platform_driver_register(&omap_dma_driver);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
}
subsys_initcall(omap_dma_init);

static void __exit omap_dma_exit(void)
{
	platform_driver_unregister(&omap_dma_driver);
}
module_exit(omap_dma_exit);

MODULE_AUTHOR("Russell King");
MODULE_LICENSE("GPL");