omap-dma.c 23.6 KB
Newer Older
1 2 3 4 5 6 7
/*
 * OMAP DMAengine support
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
8
#include <linux/delay.h>
9 10 11 12 13 14 15 16 17 18 19
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/omap-dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
20 21
#include <linux/of_dma.h>
#include <linux/of_device.h>
22 23

#include "virt-dma.h"
24

25 26 27 28 29
struct omap_dmadev {
	struct dma_device ddev;
	spinlock_t lock;
	struct tasklet_struct task;
	struct list_head pending;
30
	struct omap_system_dma_plat_info *plat;
31 32 33 34 35
};

struct omap_chan {
	struct virt_dma_chan vc;
	struct list_head node;
36
	struct omap_system_dma_plat_info *plat;
37 38 39

	struct dma_slave_config	cfg;
	unsigned dma_sig;
40
	bool cyclic;
41
	bool paused;
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

	int dma_ch;
	struct omap_desc *desc;
	unsigned sgidx;
};

struct omap_sg {
	dma_addr_t addr;
	uint32_t en;		/* number of elements (24-bit) */
	uint32_t fn;		/* number of frames (16-bit) */
};

struct omap_desc {
	struct virt_dma_desc vd;
	enum dma_transfer_direction dir;
	dma_addr_t dev_addr;

59
	int16_t fi;		/* for OMAP_DMA_SYNC_PACKET */
60 61 62
	uint8_t es;		/* OMAP_DMA_DATA_TYPE_xxx */
	uint8_t sync_mode;	/* OMAP_DMA_SYNC_xxx */
	uint8_t sync_type;	/* OMAP_DMA_xxx_SYNC* */
63
	uint16_t cicr;		/* CICR value */
64
	uint32_t csdp;		/* CSDP value */
65 66 67 68 69 70 71 72 73 74 75

	unsigned sglen;
	struct omap_sg sg[0];
};

static const unsigned es_bytes[] = {
	[OMAP_DMA_DATA_TYPE_S8] = 1,
	[OMAP_DMA_DATA_TYPE_S16] = 2,
	[OMAP_DMA_DATA_TYPE_S32] = 4,
};

76 77 78 79
static struct of_dma_filter_info omap_dma_info = {
	.filter_fn = omap_dma_filter_fn,
};

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
{
	return container_of(d, struct omap_dmadev, ddev);
}

static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
{
	return container_of(c, struct omap_chan, vc.chan);
}

static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct omap_desc, vd.tx);
}

static void omap_dma_desc_free(struct virt_dma_desc *vd)
{
	kfree(container_of(vd, struct omap_desc, vd));
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	if (__dma_omap15xx(od->plat->dma_attr))
		c->plat->dma_write(0, CPC, c->dma_ch);
	else
		c->plat->dma_write(0, CDAC, c->dma_ch);

	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
		val = c->plat->dma_read(CLNK_CTRL, c->dma_ch);

		if (dma_omap1())
			val &= ~(1 << 14);

		val |= c->dma_ch | 1 << 15;

		c->plat->dma_write(val, CLNK_CTRL, c->dma_ch);
	} else if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
		c->plat->dma_write(c->dma_ch, CLNK_CTRL, c->dma_ch);

	/* Clear CSR */
	if (dma_omap1())
		c->plat->dma_read(CSR, c->dma_ch);
	else
		c->plat->dma_write(~0, CSR, c->dma_ch);

	/* Enable interrupts */
	c->plat->dma_write(d->cicr, CICR, c->dma_ch);

	val = c->plat->dma_read(CCR, c->dma_ch);
	if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
		val |= OMAP_DMA_CCR_BUFFERING_DISABLE;
	val |= OMAP_DMA_CCR_EN;
	mb();
	c->plat->dma_write(val, CCR, c->dma_ch);
}

static void omap_dma_stop(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	/* disable irq */
	c->plat->dma_write(0, CICR, c->dma_ch);

	/* Clear CSR */
	if (dma_omap1())
		c->plat->dma_read(CSR, c->dma_ch);
	else
		c->plat->dma_write(~0, CSR, c->dma_ch);

	val = c->plat->dma_read(CCR, c->dma_ch);
	if (od->plat->errata & DMA_ERRATA_i541 &&
	    val & OMAP_DMA_CCR_SEL_SRC_DST_SYNC) {
		uint32_t sysconfig;
		unsigned i;

		sysconfig = c->plat->dma_read(OCP_SYSCONFIG, c->dma_ch);
		val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
		val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
		c->plat->dma_write(val, OCP_SYSCONFIG, c->dma_ch);

		val = c->plat->dma_read(CCR, c->dma_ch);
		val &= ~OMAP_DMA_CCR_EN;
		c->plat->dma_write(val, CCR, c->dma_ch);

		/* Wait for sDMA FIFO to drain */
		for (i = 0; ; i++) {
			val = c->plat->dma_read(CCR, c->dma_ch);
			if (!(val & (OMAP_DMA_CCR_RD_ACTIVE | OMAP_DMA_CCR_WR_ACTIVE)))
				break;

			if (i > 100)
				break;

			udelay(5);
		}

		if (val & (OMAP_DMA_CCR_RD_ACTIVE | OMAP_DMA_CCR_WR_ACTIVE))
			dev_err(c->vc.chan.device->dev,
				"DMA drain did not complete on lch %d\n",
			        c->dma_ch);

		c->plat->dma_write(sysconfig, OCP_SYSCONFIG, c->dma_ch);
	} else {
		val &= ~OMAP_DMA_CCR_EN;
		c->plat->dma_write(val, CCR, c->dma_ch);
	}

	mb();

	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
		val = c->plat->dma_read(CLNK_CTRL, c->dma_ch);

		if (dma_omap1())
			val |= 1 << 14; /* set the STOP_LNK bit */
		else
			val &= ~(1 << 15); /* Clear the ENABLE_LNK bit */

		c->plat->dma_write(val, CLNK_CTRL, c->dma_ch);
	}
}

205 206 207 208
static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
	unsigned idx)
{
	struct omap_sg *sg = d->sg + idx;
209 210 211 212 213 214 215 216 217 218 219 220 221 222

	if (d->dir == DMA_DEV_TO_MEM) {
		c->plat->dma_write(sg->addr, CDSA, c->dma_ch);
		c->plat->dma_write(0, CDEI, c->dma_ch);
		c->plat->dma_write(0, CDFI, c->dma_ch);
	} else {
		c->plat->dma_write(sg->addr, CSSA, c->dma_ch);
		c->plat->dma_write(0, CSEI, c->dma_ch);
		c->plat->dma_write(0, CSFI, c->dma_ch);
	}

	c->plat->dma_write(sg->en, CEN, c->dma_ch);
	c->plat->dma_write(sg->fn, CFN, c->dma_ch);

223
	omap_dma_start(c, d);
224 225 226 227 228 229
}

static void omap_dma_start_desc(struct omap_chan *c)
{
	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
	struct omap_desc *d;
230 231
	uint32_t val;

232 233 234 235 236 237 238 239 240 241
	if (!vd) {
		c->desc = NULL;
		return;
	}

	list_del(&vd->node);

	c->desc = d = to_omap_dma_desc(&vd->tx);
	c->sgidx = 0;

242 243
	if (d->dir == DMA_DEV_TO_MEM) {
		val = c->plat->dma_read(CCR, c->dma_ch);
244
		val &= ~(0x03 << 14 | 0x03 << 12);
245
		val |= OMAP_DMA_AMODE_POST_INC << 14;
246
		val |= OMAP_DMA_AMODE_CONSTANT << 12;
247 248
		c->plat->dma_write(val, CCR, c->dma_ch);

249 250 251
		c->plat->dma_write(d->dev_addr, CSSA, c->dma_ch);
		c->plat->dma_write(0, CSEI, c->dma_ch);
		c->plat->dma_write(d->fi, CSFI, c->dma_ch);
252 253
	} else {
		val = c->plat->dma_read(CCR, c->dma_ch);
254 255
		val &= ~(0x03 << 12 | 0x03 << 14);
		val |= OMAP_DMA_AMODE_CONSTANT << 14;
256 257 258
		val |= OMAP_DMA_AMODE_POST_INC << 12;
		c->plat->dma_write(val, CCR, c->dma_ch);

259 260 261
		c->plat->dma_write(d->dev_addr, CDSA, c->dma_ch);
		c->plat->dma_write(0, CDEI, c->dma_ch);
		c->plat->dma_write(d->fi, CDFI, c->dma_ch);
262 263
	}

264
	c->plat->dma_write(d->csdp, CSDP, c->dma_ch);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	if (dma_omap1()) {
		val = c->plat->dma_read(CCR, c->dma_ch);
		val &= ~(1 << 5);
		if (d->sync_mode == OMAP_DMA_SYNC_FRAME)
			val |= 1 << 5;
		c->plat->dma_write(val, CCR, c->dma_ch);

		val = c->plat->dma_read(CCR2, c->dma_ch);
		val &= ~(1 << 2);
		if (d->sync_mode == OMAP_DMA_SYNC_BLOCK)
			val |= 1 << 2;
		c->plat->dma_write(val, CCR2, c->dma_ch);
	} else if (c->dma_sig) {
		val = c->plat->dma_read(CCR, c->dma_ch);

		/* DMA_SYNCHRO_CONTROL_UPPER depends on the channel number */
282
		val &= ~(1 << 24 | 1 << 23 | 3 << 19 | 1 << 18 | 1 << 5 | 0x1f);
283 284 285 286 287 288 289 290 291 292
		val |= (c->dma_sig & ~0x1f) << 14;
		val |= c->dma_sig & 0x1f;

		if (d->sync_mode & OMAP_DMA_SYNC_FRAME)
			val |= 1 << 5;

		if (d->sync_mode & OMAP_DMA_SYNC_BLOCK)
			val |= 1 << 18;

		switch (d->sync_type) {
293
		case OMAP_DMA_DST_SYNC_PREFETCH:/* dest synch */
294 295 296 297 298
			val |= 1 << 23;		/* Prefetch */
			break;
		case 0:
			break;
		default:
299
			val |= 1 << 24; 	/* source synch */
300 301 302 303
			break;
		}
		c->plat->dma_write(val, CCR, c->dma_ch);
	}
304 305 306 307 308 309 310 311 312 313 314 315 316

	omap_dma_start_sg(c, d, 0);
}

static void omap_dma_callback(int ch, u16 status, void *data)
{
	struct omap_chan *c = data;
	struct omap_desc *d;
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	d = c->desc;
	if (d) {
317 318 319 320 321 322 323
		if (!c->cyclic) {
			if (++c->sgidx < d->sglen) {
				omap_dma_start_sg(c, d, c->sgidx);
			} else {
				omap_dma_start_desc(c);
				vchan_cookie_complete(&d->vd);
			}
324
		} else {
325
			vchan_cyclic_callback(&d->vd);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		}
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

/*
 * This callback schedules all pending channels.  We could be more
 * clever here by postponing allocation of the real DMA channels to
 * this point, and freeing them when our virtual channel becomes idle.
 *
 * We would then need to deal with 'all channels in-use'
 */
static void omap_dma_sched(unsigned long data)
{
	struct omap_dmadev *d = (struct omap_dmadev *)data;
	LIST_HEAD(head);

	spin_lock_irq(&d->lock);
	list_splice_tail_init(&d->pending, &head);
	spin_unlock_irq(&d->lock);

	while (!list_empty(&head)) {
		struct omap_chan *c = list_first_entry(&head,
			struct omap_chan, node);

		spin_lock_irq(&c->vc.lock);
		list_del_init(&c->node);
		omap_dma_start_desc(c);
		spin_unlock_irq(&c->vc.lock);
	}
}

static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);

362
	dev_dbg(c->vc.chan.device->dev, "allocating channel for %u\n", c->dma_sig);
363 364 365 366 367 368 369 370 371 372 373 374

	return omap_request_dma(c->dma_sig, "DMA engine",
		omap_dma_callback, c, &c->dma_ch);
}

static void omap_dma_free_chan_resources(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);

	vchan_free_chan_resources(&c->vc);
	omap_free_dma(c->dma_ch);

375
	dev_dbg(c->vc.chan.device->dev, "freeing channel for %u\n", c->dma_sig);
376 377
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static size_t omap_dma_sg_size(struct omap_sg *sg)
{
	return sg->en * sg->fn;
}

static size_t omap_dma_desc_size(struct omap_desc *d)
{
	unsigned i;
	size_t size;

	for (size = i = 0; i < d->sglen; i++)
		size += omap_dma_sg_size(&d->sg[i]);

	return size * es_bytes[d->es];
}

static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
{
	unsigned i;
	size_t size, es_size = es_bytes[d->es];

	for (size = i = 0; i < d->sglen; i++) {
		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;

		if (size)
			size += this_size;
		else if (addr >= d->sg[i].addr &&
			 addr < d->sg[i].addr + this_size)
			size += d->sg[i].addr + this_size - addr;
	}
	return size;
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	dma_addr_t addr;

	if (__dma_omap15xx(od->plat->dma_attr))
		addr = c->plat->dma_read(CPC, c->dma_ch);
	else
		addr = c->plat->dma_read(CSAC, c->dma_ch);

	if (od->plat->errata & DMA_ERRATA_3_3 && addr == 0)
		addr = c->plat->dma_read(CSAC, c->dma_ch);

	if (!__dma_omap15xx(od->plat->dma_attr)) {
		/*
		 * CDAC == 0 indicates that the DMA transfer on the channel has
		 * not been started (no data has been transferred so far).
		 * Return the programmed source start address in this case.
		 */
		if (c->plat->dma_read(CDAC, c->dma_ch))
			addr = c->plat->dma_read(CSAC, c->dma_ch);
		else
			addr = c->plat->dma_read(CSSA, c->dma_ch);
	}

	if (dma_omap1())
		addr |= c->plat->dma_read(CSSA, c->dma_ch) & 0xffff0000;

	return addr;
}

static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	dma_addr_t addr;

	if (__dma_omap15xx(od->plat->dma_attr))
		addr = c->plat->dma_read(CPC, c->dma_ch);
	else
		addr = c->plat->dma_read(CDAC, c->dma_ch);

	/*
	 * omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
	 * read before the DMA controller finished disabling the channel.
	 */
	if (!__dma_omap15xx(od->plat->dma_attr) && addr == 0) {
		addr = c->plat->dma_read(CDAC, c->dma_ch);
		/*
		 * CDAC == 0 indicates that the DMA transfer on the channel has
		 * not been started (no data has been transferred so far).
		 * Return the programmed destination start address in this case.
		 */
		if (addr == 0)
			addr = c->plat->dma_read(CDSA, c->dma_ch);
	}

	if (dma_omap1())
		addr |= c->plat->dma_read(CDSA, c->dma_ch) & 0xffff0000;

	return addr;
}

473 474 475
static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
	dma_cookie_t cookie, struct dma_tx_state *txstate)
{
476 477 478 479 480 481
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
482
	if (ret == DMA_COMPLETE || !txstate)
483 484 485 486 487 488 489 490 491 492 493
		return ret;

	spin_lock_irqsave(&c->vc.lock, flags);
	vd = vchan_find_desc(&c->vc, cookie);
	if (vd) {
		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
		struct omap_desc *d = c->desc;
		dma_addr_t pos;

		if (d->dir == DMA_MEM_TO_DEV)
494
			pos = omap_dma_get_src_pos(c);
495
		else if (d->dir == DMA_DEV_TO_MEM)
496
			pos = omap_dma_get_dst_pos(c);
497 498 499 500 501 502 503 504 505 506
		else
			pos = 0;

		txstate->residue = omap_dma_desc_size_pos(d, pos);
	} else {
		txstate->residue = 0;
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);

	return ret;
507 508 509 510 511 512 513 514 515
}

static void omap_dma_issue_pending(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	if (vchan_issue_pending(&c->vc) && !c->desc) {
516 517 518 519 520 521 522 523 524 525 526 527 528 529
		/*
		 * c->cyclic is used only by audio and in this case the DMA need
		 * to be started without delay.
		 */
		if (!c->cyclic) {
			struct omap_dmadev *d = to_omap_dma_dev(chan->device);
			spin_lock(&d->lock);
			if (list_empty(&c->node))
				list_add_tail(&c->node, &d->pending);
			spin_unlock(&d->lock);
			tasklet_schedule(&d->task);
		} else {
			omap_dma_start_desc(c);
		}
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct scatterlist *sgent;
	struct omap_desc *d;
	dma_addr_t dev_addr;
	unsigned i, j = 0, es, en, frame_bytes, sync_type;
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
		sync_type = OMAP_DMA_SRC_SYNC;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
		sync_type = OMAP_DMA_DST_SYNC;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		es = OMAP_DMA_DATA_TYPE_S8;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		es = OMAP_DMA_DATA_TYPE_S16;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		es = OMAP_DMA_DATA_TYPE_S32;
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->es = es;
	d->sync_mode = OMAP_DMA_SYNC_FRAME;
	d->sync_type = sync_type;
586
	d->cicr = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ;
587
	d->csdp = es;
588

589
	if (dma_omap1()) {
590
		d->cicr |= OMAP1_DMA_TOUT_IRQ;
591 592 593 594 595 596 597 598

		if (dir == DMA_DEV_TO_MEM)
			d->csdp |= OMAP_DMA_PORT_EMIFF << 9 |
				   OMAP_DMA_PORT_TIPB << 2;
		else
			d->csdp |= OMAP_DMA_PORT_TIPB << 9 |
				   OMAP_DMA_PORT_EMIFF << 2;
	} else {
599
		d->cicr |= OMAP2_DMA_MISALIGNED_ERR_IRQ | OMAP2_DMA_TRANS_ERR_IRQ;
600
	}
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

	/*
	 * Build our scatterlist entries: each contains the address,
	 * the number of elements (EN) in each frame, and the number of
	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
	 *
	 * Burst size translates to number of elements with frame sync.
	 * Note: DMA engine defines burst to be the number of dev-width
	 * transfers.
	 */
	en = burst;
	frame_bytes = es_bytes[es] * en;
	for_each_sg(sgl, sgent, sglen, i) {
		d->sg[j].addr = sg_dma_address(sgent);
		d->sg[j].en = en;
		d->sg[j].fn = sg_dma_len(sgent) / frame_bytes;
		j++;
	}

	d->sglen = j;

	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

625 626
static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
627 628
	size_t period_len, enum dma_transfer_direction dir, unsigned long flags,
	void *context)
629
{
630
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct omap_desc *d;
	dma_addr_t dev_addr;
	unsigned es, sync_type;
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
		sync_type = OMAP_DMA_SRC_SYNC;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
		sync_type = OMAP_DMA_DST_SYNC;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		es = OMAP_DMA_DATA_TYPE_S8;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		es = OMAP_DMA_DATA_TYPE_S16;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		es = OMAP_DMA_DATA_TYPE_S32;
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->fi = burst;
	d->es = es;
677 678 679 680
	if (burst)
		d->sync_mode = OMAP_DMA_SYNC_PACKET;
	else
		d->sync_mode = OMAP_DMA_SYNC_ELEMENT;
681 682 683 684 685
	d->sync_type = sync_type;
	d->sg[0].addr = buf_addr;
	d->sg[0].en = period_len / es_bytes[es];
	d->sg[0].fn = buf_len / period_len;
	d->sglen = 1;
686 687 688 689
	d->cicr = OMAP_DMA_DROP_IRQ;
	if (flags & DMA_PREP_INTERRUPT)
		d->cicr |= OMAP_DMA_FRAME_IRQ;

690 691 692
	d->csdp = es;

	if (dma_omap1()) {
693
		d->cicr |= OMAP1_DMA_TOUT_IRQ;
694 695 696 697 698 699 700 701

		if (dir == DMA_DEV_TO_MEM)
			d->csdp |= OMAP_DMA_PORT_EMIFF << 9 |
				   OMAP_DMA_PORT_MPUI << 2;
		else
			d->csdp |= OMAP_DMA_PORT_MPUI << 9 |
				   OMAP_DMA_PORT_EMIFF << 2;
	} else {
702
		d->cicr |= OMAP2_DMA_MISALIGNED_ERR_IRQ | OMAP2_DMA_TRANS_ERR_IRQ;
703

704 705 706 707
		/* src and dst burst mode 16 */
		d->csdp |= 3 << 14 | 3 << 7;
	}

708 709
	if (!c->cyclic) {
		c->cyclic = true;
710

711 712
		if (__dma_omap15xx(od->plat->dma_attr)) {
			uint32_t val;
713

714 715 716 717
			val = c->plat->dma_read(CCR, c->dma_ch);
			val |= 3 << 8;
			c->plat->dma_write(val, CCR, c->dma_ch);
		}
718 719
	}

720
	return vchan_tx_prep(&c->vc, &d->vd, flags);
721 722
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static int omap_dma_slave_config(struct omap_chan *c, struct dma_slave_config *cfg)
{
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
		return -EINVAL;

	memcpy(&c->cfg, cfg, sizeof(c->cfg));

	return 0;
}

static int omap_dma_terminate_all(struct omap_chan *c)
{
	struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&c->vc.lock, flags);

	/* Prevent this channel being scheduled */
	spin_lock(&d->lock);
	list_del_init(&c->node);
	spin_unlock(&d->lock);

	/*
	 * Stop DMA activity: we assume the callback will not be called
749
	 * after omap_dma_stop() returns (even if it does, it will see
750 751 752 753
	 * c->desc is NULL and exit.)
	 */
	if (c->desc) {
		c->desc = NULL;
754 755
		/* Avoid stopping the dma twice */
		if (!c->paused)
756
			omap_dma_stop(c);
757 758
	}

759 760
	if (c->cyclic) {
		c->cyclic = false;
761
		c->paused = false;
762 763 764 765 766 767 768 769

		if (__dma_omap15xx(od->plat->dma_attr)) {
			uint32_t val;

			val = c->plat->dma_read(CCR, c->dma_ch);
			val &= ~(3 << 8);
			c->plat->dma_write(val, CCR, c->dma_ch);
		}
770 771
	}

772 773 774 775 776 777 778 779 780
	vchan_get_all_descriptors(&c->vc, &head);
	spin_unlock_irqrestore(&c->vc.lock, flags);
	vchan_dma_desc_free_list(&c->vc, &head);

	return 0;
}

static int omap_dma_pause(struct omap_chan *c)
{
781 782 783 784 785
	/* Pause/Resume only allowed with cyclic mode */
	if (!c->cyclic)
		return -EINVAL;

	if (!c->paused) {
786
		omap_dma_stop(c);
787 788 789 790
		c->paused = true;
	}

	return 0;
791 792 793 794
}

static int omap_dma_resume(struct omap_chan *c)
{
795 796 797 798 799
	/* Pause/Resume only allowed with cyclic mode */
	if (!c->cyclic)
		return -EINVAL;

	if (c->paused) {
800
		omap_dma_start(c, c->desc);
801 802 803 804
		c->paused = false;
	}

	return 0;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
}

static int omap_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
	unsigned long arg)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	int ret;

	switch (cmd) {
	case DMA_SLAVE_CONFIG:
		ret = omap_dma_slave_config(c, (struct dma_slave_config *)arg);
		break;

	case DMA_TERMINATE_ALL:
		ret = omap_dma_terminate_all(c);
		break;

	case DMA_PAUSE:
		ret = omap_dma_pause(c);
		break;

	case DMA_RESUME:
		ret = omap_dma_resume(c);
		break;

	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig)
{
	struct omap_chan *c;

	c = kzalloc(sizeof(*c), GFP_KERNEL);
	if (!c)
		return -ENOMEM;

846
	c->plat = od->plat;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	c->dma_sig = dma_sig;
	c->vc.desc_free = omap_dma_desc_free;
	vchan_init(&c->vc, &od->ddev);
	INIT_LIST_HEAD(&c->node);

	od->ddev.chancnt++;

	return 0;
}

static void omap_dma_free(struct omap_dmadev *od)
{
	tasklet_kill(&od->task);
	while (!list_empty(&od->ddev.channels)) {
		struct omap_chan *c = list_first_entry(&od->ddev.channels,
			struct omap_chan, vc.chan.device_node);

		list_del(&c->vc.chan.device_node);
		tasklet_kill(&c->vc.task);
		kfree(c);
	}
}

static int omap_dma_probe(struct platform_device *pdev)
{
	struct omap_dmadev *od;
	int rc, i;

875
	od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
876 877 878
	if (!od)
		return -ENOMEM;

879 880 881 882
	od->plat = omap_get_plat_info();
	if (!od->plat)
		return -EPROBE_DEFER;

883
	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
884
	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
885 886 887 888 889
	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
	od->ddev.device_tx_status = omap_dma_tx_status;
	od->ddev.device_issue_pending = omap_dma_issue_pending;
	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
890
	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	od->ddev.device_control = omap_dma_control;
	od->ddev.dev = &pdev->dev;
	INIT_LIST_HEAD(&od->ddev.channels);
	INIT_LIST_HEAD(&od->pending);
	spin_lock_init(&od->lock);

	tasklet_init(&od->task, omap_dma_sched, (unsigned long)od);

	for (i = 0; i < 127; i++) {
		rc = omap_dma_chan_init(od, i);
		if (rc) {
			omap_dma_free(od);
			return rc;
		}
	}

	rc = dma_async_device_register(&od->ddev);
	if (rc) {
		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
			rc);
		omap_dma_free(od);
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		return rc;
	}

	platform_set_drvdata(pdev, od);

	if (pdev->dev.of_node) {
		omap_dma_info.dma_cap = od->ddev.cap_mask;

		/* Device-tree DMA controller registration */
		rc = of_dma_controller_register(pdev->dev.of_node,
				of_dma_simple_xlate, &omap_dma_info);
		if (rc) {
			pr_warn("OMAP-DMA: failed to register DMA controller\n");
			dma_async_device_unregister(&od->ddev);
			omap_dma_free(od);
		}
928 929 930 931 932 933 934 935 936 937 938
	}

	dev_info(&pdev->dev, "OMAP DMA engine driver\n");

	return rc;
}

static int omap_dma_remove(struct platform_device *pdev)
{
	struct omap_dmadev *od = platform_get_drvdata(pdev);

939 940 941
	if (pdev->dev.of_node)
		of_dma_controller_free(pdev->dev.of_node);

942 943 944 945 946 947
	dma_async_device_unregister(&od->ddev);
	omap_dma_free(od);

	return 0;
}

948 949 950 951 952 953 954 955 956 957
static const struct of_device_id omap_dma_match[] = {
	{ .compatible = "ti,omap2420-sdma", },
	{ .compatible = "ti,omap2430-sdma", },
	{ .compatible = "ti,omap3430-sdma", },
	{ .compatible = "ti,omap3630-sdma", },
	{ .compatible = "ti,omap4430-sdma", },
	{},
};
MODULE_DEVICE_TABLE(of, omap_dma_match);

958 959 960 961 962 963
static struct platform_driver omap_dma_driver = {
	.probe	= omap_dma_probe,
	.remove	= omap_dma_remove,
	.driver = {
		.name = "omap-dma-engine",
		.owner = THIS_MODULE,
964
		.of_match_table = of_match_ptr(omap_dma_match),
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	},
};

bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &omap_dma_driver.driver) {
		struct omap_chan *c = to_omap_dma_chan(chan);
		unsigned req = *(unsigned *)param;

		return req == c->dma_sig;
	}
	return false;
}
EXPORT_SYMBOL_GPL(omap_dma_filter_fn);

static int omap_dma_init(void)
{
982
	return platform_driver_register(&omap_dma_driver);
983 984 985 986 987 988 989 990 991 992 993
}
subsys_initcall(omap_dma_init);

static void __exit omap_dma_exit(void)
{
	platform_driver_unregister(&omap_dma_driver);
}
module_exit(omap_dma_exit);

MODULE_AUTHOR("Russell King");
MODULE_LICENSE("GPL");