omap-dma.c 36.5 KB
Newer Older
1 2 3 4 5 6 7
/*
 * OMAP DMAengine support
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
8
#include <linux/delay.h>
9 10
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
11
#include <linux/dmapool.h>
12 13 14 15 16 17 18 19 20
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/omap-dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
21 22
#include <linux/of_dma.h>
#include <linux/of_device.h>
23 24

#include "virt-dma.h"
25

26 27 28
#define OMAP_SDMA_REQUESTS	127
#define OMAP_SDMA_CHANNELS	32

29 30 31
struct omap_dmadev {
	struct dma_device ddev;
	spinlock_t lock;
32 33
	void __iomem *base;
	const struct omap_dma_reg *reg_map;
34
	struct omap_system_dma_plat_info *plat;
35
	bool legacy;
36 37
	bool ll123_supported;
	struct dma_pool *desc_pool;
38
	unsigned dma_requests;
39 40
	spinlock_t irq_lock;
	uint32_t irq_enable_mask;
41
	struct omap_chan **lch_map;
42 43 44 45
};

struct omap_chan {
	struct virt_dma_chan vc;
46 47
	void __iomem *channel_base;
	const struct omap_dma_reg *reg_map;
48
	uint32_t ccr;
49 50 51

	struct dma_slave_config	cfg;
	unsigned dma_sig;
52
	bool cyclic;
53
	bool paused;
54
	bool running;
55 56 57 58 59 60

	int dma_ch;
	struct omap_desc *desc;
	unsigned sgidx;
};

61 62 63 64 65 66 67 68 69 70 71 72 73
#define DESC_NXT_SV_REFRESH	(0x1 << 24)
#define DESC_NXT_SV_REUSE	(0x2 << 24)
#define DESC_NXT_DV_REFRESH	(0x1 << 26)
#define DESC_NXT_DV_REUSE	(0x2 << 26)
#define DESC_NTYPE_TYPE2	(0x2 << 29)

/* Type 2 descriptor with Source or Destination address update */
struct omap_type2_desc {
	uint32_t next_desc;
	uint32_t en;
	uint32_t addr; /* src or dst */
	uint16_t fn;
	uint16_t cicr;
74 75 76 77
	int16_t cdei;
	int16_t csei;
	int32_t cdfi;
	int32_t csfi;
78 79
} __packed;

80 81 82 83
struct omap_sg {
	dma_addr_t addr;
	uint32_t en;		/* number of elements (24-bit) */
	uint32_t fn;		/* number of frames (16-bit) */
84 85
	int32_t fi;		/* for double indexing */
	int16_t ei;		/* for double indexing */
86 87 88 89

	/* Linked list */
	struct omap_type2_desc *t2_desc;
	dma_addr_t t2_desc_paddr;
90 91 92 93
};

struct omap_desc {
	struct virt_dma_desc vd;
94
	bool using_ll;
95 96 97
	enum dma_transfer_direction dir;
	dma_addr_t dev_addr;

98 99
	int32_t fi;		/* for OMAP_DMA_SYNC_PACKET / double indexing */
	int16_t ei;		/* for double indexing */
100
	uint8_t es;		/* CSDP_DATA_TYPE_xxx */
101
	uint32_t ccr;		/* CCR value */
102
	uint16_t clnk_ctrl;	/* CLNK_CTRL value */
103
	uint16_t cicr;		/* CICR value */
104
	uint32_t csdp;		/* CSDP value */
105 106 107 108 109

	unsigned sglen;
	struct omap_sg sg[0];
};

110
enum {
111 112 113
	CAPS_0_SUPPORT_LL123	= BIT(20),	/* Linked List type1/2/3 */
	CAPS_0_SUPPORT_LL4	= BIT(21),	/* Linked List type4 */

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	CCR_FS			= BIT(5),
	CCR_READ_PRIORITY	= BIT(6),
	CCR_ENABLE		= BIT(7),
	CCR_AUTO_INIT		= BIT(8),	/* OMAP1 only */
	CCR_REPEAT		= BIT(9),	/* OMAP1 only */
	CCR_OMAP31_DISABLE	= BIT(10),	/* OMAP1 only */
	CCR_SUSPEND_SENSITIVE	= BIT(8),	/* OMAP2+ only */
	CCR_RD_ACTIVE		= BIT(9),	/* OMAP2+ only */
	CCR_WR_ACTIVE		= BIT(10),	/* OMAP2+ only */
	CCR_SRC_AMODE_CONSTANT	= 0 << 12,
	CCR_SRC_AMODE_POSTINC	= 1 << 12,
	CCR_SRC_AMODE_SGLIDX	= 2 << 12,
	CCR_SRC_AMODE_DBLIDX	= 3 << 12,
	CCR_DST_AMODE_CONSTANT	= 0 << 14,
	CCR_DST_AMODE_POSTINC	= 1 << 14,
	CCR_DST_AMODE_SGLIDX	= 2 << 14,
	CCR_DST_AMODE_DBLIDX	= 3 << 14,
	CCR_CONSTANT_FILL	= BIT(16),
	CCR_TRANSPARENT_COPY	= BIT(17),
	CCR_BS			= BIT(18),
	CCR_SUPERVISOR		= BIT(22),
	CCR_PREFETCH		= BIT(23),
	CCR_TRIGGER_SRC		= BIT(24),
	CCR_BUFFERING_DISABLE	= BIT(25),
	CCR_WRITE_PRIORITY	= BIT(26),
	CCR_SYNC_ELEMENT	= 0,
	CCR_SYNC_FRAME		= CCR_FS,
	CCR_SYNC_BLOCK		= CCR_BS,
	CCR_SYNC_PACKET		= CCR_BS | CCR_FS,

	CSDP_DATA_TYPE_8	= 0,
	CSDP_DATA_TYPE_16	= 1,
	CSDP_DATA_TYPE_32	= 2,
	CSDP_SRC_PORT_EMIFF	= 0 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_EMIFS	= 1 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_OCP_T1	= 2 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_TIPB	= 3 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_OCP_T2	= 4 << 2, /* OMAP1 only */
	CSDP_SRC_PORT_MPUI	= 5 << 2, /* OMAP1 only */
	CSDP_SRC_PACKED		= BIT(6),
	CSDP_SRC_BURST_1	= 0 << 7,
	CSDP_SRC_BURST_16	= 1 << 7,
	CSDP_SRC_BURST_32	= 2 << 7,
	CSDP_SRC_BURST_64	= 3 << 7,
	CSDP_DST_PORT_EMIFF	= 0 << 9, /* OMAP1 only */
	CSDP_DST_PORT_EMIFS	= 1 << 9, /* OMAP1 only */
	CSDP_DST_PORT_OCP_T1	= 2 << 9, /* OMAP1 only */
	CSDP_DST_PORT_TIPB	= 3 << 9, /* OMAP1 only */
	CSDP_DST_PORT_OCP_T2	= 4 << 9, /* OMAP1 only */
	CSDP_DST_PORT_MPUI	= 5 << 9, /* OMAP1 only */
	CSDP_DST_PACKED		= BIT(13),
	CSDP_DST_BURST_1	= 0 << 14,
	CSDP_DST_BURST_16	= 1 << 14,
	CSDP_DST_BURST_32	= 2 << 14,
	CSDP_DST_BURST_64	= 3 << 14,

	CICR_TOUT_IE		= BIT(0),	/* OMAP1 only */
	CICR_DROP_IE		= BIT(1),
	CICR_HALF_IE		= BIT(2),
	CICR_FRAME_IE		= BIT(3),
	CICR_LAST_IE		= BIT(4),
	CICR_BLOCK_IE		= BIT(5),
	CICR_PKT_IE		= BIT(7),	/* OMAP2+ only */
	CICR_TRANS_ERR_IE	= BIT(8),	/* OMAP2+ only */
	CICR_SUPERVISOR_ERR_IE	= BIT(10),	/* OMAP2+ only */
	CICR_MISALIGNED_ERR_IE	= BIT(11),	/* OMAP2+ only */
	CICR_DRAIN_IE		= BIT(12),	/* OMAP2+ only */
	CICR_SUPER_BLOCK_IE	= BIT(14),	/* OMAP2+ only */

	CLNK_CTRL_ENABLE_LNK	= BIT(15),
184 185 186 187 188 189 190 191 192 193 194 195 196

	CDP_DST_VALID_INC	= 0 << 0,
	CDP_DST_VALID_RELOAD	= 1 << 0,
	CDP_DST_VALID_REUSE	= 2 << 0,
	CDP_SRC_VALID_INC	= 0 << 2,
	CDP_SRC_VALID_RELOAD	= 1 << 2,
	CDP_SRC_VALID_REUSE	= 2 << 2,
	CDP_NTYPE_TYPE1		= 1 << 4,
	CDP_NTYPE_TYPE2		= 2 << 4,
	CDP_NTYPE_TYPE3		= 3 << 4,
	CDP_TMODE_NORMAL	= 0 << 8,
	CDP_TMODE_LLIST		= 1 << 8,
	CDP_FAST		= BIT(10),
197 198
};

199
static const unsigned es_bytes[] = {
200 201 202
	[CSDP_DATA_TYPE_8] = 1,
	[CSDP_DATA_TYPE_16] = 2,
	[CSDP_DATA_TYPE_32] = 4,
203 204
};

205 206 207 208
static struct of_dma_filter_info omap_dma_info = {
	.filter_fn = omap_dma_filter_fn,
};

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
{
	return container_of(d, struct omap_dmadev, ddev);
}

static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
{
	return container_of(c, struct omap_chan, vc.chan);
}

static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct omap_desc, vd.tx);
}

static void omap_dma_desc_free(struct virt_dma_desc *vd)
{
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	struct omap_desc *d = to_omap_dma_desc(&vd->tx);

	if (d->using_ll) {
		struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
		int i;

		for (i = 0; i < d->sglen; i++) {
			if (d->sg[i].t2_desc)
				dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
					      d->sg[i].t2_desc_paddr);
		}
	}

	kfree(d);
}

static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
				     enum dma_transfer_direction dir, bool last)
{
	struct omap_sg *sg = &d->sg[idx];
	struct omap_type2_desc *t2_desc = sg->t2_desc;

	if (idx)
		d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
	if (last)
		t2_desc->next_desc = 0xfffffffc;

	t2_desc->en = sg->en;
	t2_desc->addr = sg->addr;
	t2_desc->fn = sg->fn & 0xffff;
	t2_desc->cicr = d->cicr;
	if (!last)
		t2_desc->cicr &= ~CICR_BLOCK_IE;

	switch (dir) {
	case DMA_DEV_TO_MEM:
		t2_desc->cdei = sg->ei;
		t2_desc->csei = d->ei;
		t2_desc->cdfi = sg->fi;
		t2_desc->csfi = d->fi;

		t2_desc->en |= DESC_NXT_DV_REFRESH;
		t2_desc->en |= DESC_NXT_SV_REUSE;
		break;
	case DMA_MEM_TO_DEV:
		t2_desc->cdei = d->ei;
		t2_desc->csei = sg->ei;
		t2_desc->cdfi = d->fi;
		t2_desc->csfi = sg->fi;

		t2_desc->en |= DESC_NXT_SV_REFRESH;
		t2_desc->en |= DESC_NXT_DV_REUSE;
		break;
	default:
		return;
	}

	t2_desc->en |= DESC_NTYPE_TYPE2;
284 285
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
{
	switch (type) {
	case OMAP_DMA_REG_16BIT:
		writew_relaxed(val, addr);
		break;
	case OMAP_DMA_REG_2X16BIT:
		writew_relaxed(val, addr);
		writew_relaxed(val >> 16, addr + 2);
		break;
	case OMAP_DMA_REG_32BIT:
		writel_relaxed(val, addr);
		break;
	default:
		WARN_ON(1);
	}
}

static unsigned omap_dma_read(unsigned type, void __iomem *addr)
{
	unsigned val;

	switch (type) {
	case OMAP_DMA_REG_16BIT:
		val = readw_relaxed(addr);
		break;
	case OMAP_DMA_REG_2X16BIT:
		val = readw_relaxed(addr);
		val |= readw_relaxed(addr + 2) << 16;
		break;
	case OMAP_DMA_REG_32BIT:
		val = readl_relaxed(addr);
		break;
	default:
		WARN_ON(1);
		val = 0;
	}

	return val;
}

327 328
static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
{
329 330 331 332 333
	const struct omap_dma_reg *r = od->reg_map + reg;

	WARN_ON(r->stride);

	omap_dma_write(val, r->type, od->base + r->offset);
334 335 336 337
}

static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
{
338 339 340 341 342
	const struct omap_dma_reg *r = od->reg_map + reg;

	WARN_ON(r->stride);

	return omap_dma_read(r->type, od->base + r->offset);
343 344 345 346
}

static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
{
347 348 349
	const struct omap_dma_reg *r = c->reg_map + reg;

	omap_dma_write(val, r->type, c->channel_base + r->offset);
350 351 352 353
}

static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
{
354 355 356
	const struct omap_dma_reg *r = c->reg_map + reg;

	return omap_dma_read(r->type, c->channel_base + r->offset);
357 358
}

359 360 361
static void omap_dma_clear_csr(struct omap_chan *c)
{
	if (dma_omap1())
362
		omap_dma_chan_read(c, CSR);
363
	else
364
		omap_dma_chan_write(c, CSR, ~0);
365 366
}

367 368 369 370 371 372 373 374 375 376
static unsigned omap_dma_get_csr(struct omap_chan *c)
{
	unsigned val = omap_dma_chan_read(c, CSR);

	if (!dma_omap1())
		omap_dma_chan_write(c, CSR, val);

	return val;
}

377 378 379 380
static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
	unsigned lch)
{
	c->channel_base = od->base + od->plat->channel_stride * lch;
381 382

	od->lch_map[lch] = c;
383 384
}

385 386 387
static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
388
	uint16_t cicr = d->cicr;
389 390

	if (__dma_omap15xx(od->plat->dma_attr))
391
		omap_dma_chan_write(c, CPC, 0);
392
	else
393
		omap_dma_chan_write(c, CDAC, 0);
394

395
	omap_dma_clear_csr(c);
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	if (d->using_ll) {
		uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;

		if (d->dir == DMA_DEV_TO_MEM)
			cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
		else
			cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
		omap_dma_chan_write(c, CDP, cdp);

		omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
		omap_dma_chan_write(c, CCDN, 0);
		omap_dma_chan_write(c, CCFN, 0xffff);
		omap_dma_chan_write(c, CCEN, 0xffffff);

		cicr &= ~CICR_BLOCK_IE;
	} else if (od->ll123_supported) {
		omap_dma_chan_write(c, CDP, 0);
	}

416
	/* Enable interrupts */
417
	omap_dma_chan_write(c, CICR, cicr);
418

419
	/* Enable channel */
420
	omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
421 422

	c->running = true;
423 424 425 426 427 428 429 430
}

static void omap_dma_stop(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	/* disable irq */
431
	omap_dma_chan_write(c, CICR, 0);
432

433
	omap_dma_clear_csr(c);
434

435
	val = omap_dma_chan_read(c, CCR);
436
	if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
437 438 439
		uint32_t sysconfig;
		unsigned i;

440
		sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
441 442
		val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
		val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
443
		omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
444

445
		val = omap_dma_chan_read(c, CCR);
446
		val &= ~CCR_ENABLE;
447
		omap_dma_chan_write(c, CCR, val);
448 449 450

		/* Wait for sDMA FIFO to drain */
		for (i = 0; ; i++) {
451
			val = omap_dma_chan_read(c, CCR);
452
			if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
453 454 455 456 457 458 459 460
				break;

			if (i > 100)
				break;

			udelay(5);
		}

461
		if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
462 463 464 465
			dev_err(c->vc.chan.device->dev,
				"DMA drain did not complete on lch %d\n",
			        c->dma_ch);

466
		omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
467
	} else {
468
		val &= ~CCR_ENABLE;
469
		omap_dma_chan_write(c, CCR, val);
470 471 472 473 474
	}

	mb();

	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
475
		val = omap_dma_chan_read(c, CLNK_CTRL);
476 477 478 479

		if (dma_omap1())
			val |= 1 << 14; /* set the STOP_LNK bit */
		else
480
			val &= ~CLNK_CTRL_ENABLE_LNK;
481

482
		omap_dma_chan_write(c, CLNK_CTRL, val);
483
	}
484 485

	c->running = false;
486 487
}

488
static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
489
{
490
	struct omap_sg *sg = d->sg + c->sgidx;
491
	unsigned cxsa, cxei, cxfi;
492

493
	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
494 495 496
		cxsa = CDSA;
		cxei = CDEI;
		cxfi = CDFI;
497
	} else {
498 499 500
		cxsa = CSSA;
		cxei = CSEI;
		cxfi = CSFI;
501 502
	}

503
	omap_dma_chan_write(c, cxsa, sg->addr);
504 505
	omap_dma_chan_write(c, cxei, sg->ei);
	omap_dma_chan_write(c, cxfi, sg->fi);
506 507
	omap_dma_chan_write(c, CEN, sg->en);
	omap_dma_chan_write(c, CFN, sg->fn);
508

509
	omap_dma_start(c, d);
510
	c->sgidx++;
511 512 513 514 515 516
}

static void omap_dma_start_desc(struct omap_chan *c)
{
	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
	struct omap_desc *d;
517
	unsigned cxsa, cxei, cxfi;
518

519 520 521 522 523 524 525 526 527 528
	if (!vd) {
		c->desc = NULL;
		return;
	}

	list_del(&vd->node);

	c->desc = d = to_omap_dma_desc(&vd->tx);
	c->sgidx = 0;

529 530 531 532 533 534 535
	/*
	 * This provides the necessary barrier to ensure data held in
	 * DMA coherent memory is visible to the DMA engine prior to
	 * the transfer starting.
	 */
	mb();

536
	omap_dma_chan_write(c, CCR, d->ccr);
537
	if (dma_omap1())
538
		omap_dma_chan_write(c, CCR2, d->ccr >> 16);
539

540
	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
541 542 543
		cxsa = CSSA;
		cxei = CSEI;
		cxfi = CSFI;
544
	} else {
545 546 547
		cxsa = CDSA;
		cxei = CDEI;
		cxfi = CDFI;
548 549
	}

550
	omap_dma_chan_write(c, cxsa, d->dev_addr);
551
	omap_dma_chan_write(c, cxei, d->ei);
552 553 554
	omap_dma_chan_write(c, cxfi, d->fi);
	omap_dma_chan_write(c, CSDP, d->csdp);
	omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
555

556
	omap_dma_start_sg(c, d);
557 558 559 560 561 562 563 564 565 566 567
}

static void omap_dma_callback(int ch, u16 status, void *data)
{
	struct omap_chan *c = data;
	struct omap_desc *d;
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	d = c->desc;
	if (d) {
568
		if (c->cyclic) {
569
			vchan_cyclic_callback(&d->vd);
570
		} else if (d->using_ll || c->sgidx == d->sglen) {
571 572 573 574
			omap_dma_start_desc(c);
			vchan_cookie_complete(&d->vd);
		} else {
			omap_dma_start_sg(c, d);
575 576 577 578 579
		}
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
static irqreturn_t omap_dma_irq(int irq, void *devid)
{
	struct omap_dmadev *od = devid;
	unsigned status, channel;

	spin_lock(&od->irq_lock);

	status = omap_dma_glbl_read(od, IRQSTATUS_L1);
	status &= od->irq_enable_mask;
	if (status == 0) {
		spin_unlock(&od->irq_lock);
		return IRQ_NONE;
	}

	while ((channel = ffs(status)) != 0) {
		unsigned mask, csr;
		struct omap_chan *c;

		channel -= 1;
		mask = BIT(channel);
		status &= ~mask;

		c = od->lch_map[channel];
		if (c == NULL) {
			/* This should never happen */
			dev_err(od->ddev.dev, "invalid channel %u\n", channel);
			continue;
		}

		csr = omap_dma_get_csr(c);
		omap_dma_glbl_write(od, IRQSTATUS_L1, mask);

		omap_dma_callback(channel, csr, c);
	}

	spin_unlock(&od->irq_lock);

	return IRQ_HANDLED;
}

620 621
static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
{
622
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
623
	struct omap_chan *c = to_omap_dma_chan(chan);
624
	struct device *dev = od->ddev.dev;
625 626
	int ret;

627 628 629 630 631 632 633
	if (od->legacy) {
		ret = omap_request_dma(c->dma_sig, "DMA engine",
				       omap_dma_callback, c, &c->dma_ch);
	} else {
		ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
				       &c->dma_ch);
	}
634

635
	dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
636

637
	if (ret >= 0) {
638 639
		omap_dma_assign(od, c, c->dma_ch);

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		if (!od->legacy) {
			unsigned val;

			spin_lock_irq(&od->irq_lock);
			val = BIT(c->dma_ch);
			omap_dma_glbl_write(od, IRQSTATUS_L1, val);
			od->irq_enable_mask |= val;
			omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);

			val = omap_dma_glbl_read(od, IRQENABLE_L0);
			val &= ~BIT(c->dma_ch);
			omap_dma_glbl_write(od, IRQENABLE_L0, val);
			spin_unlock_irq(&od->irq_lock);
		}
	}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	if (dma_omap1()) {
		if (__dma_omap16xx(od->plat->dma_attr)) {
			c->ccr = CCR_OMAP31_DISABLE;
			/* Duplicate what plat-omap/dma.c does */
			c->ccr |= c->dma_ch + 1;
		} else {
			c->ccr = c->dma_sig & 0x1f;
		}
	} else {
		c->ccr = c->dma_sig & 0x1f;
		c->ccr |= (c->dma_sig & ~0x1f) << 14;
	}
	if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
		c->ccr |= CCR_BUFFERING_DISABLE;

671
	return ret;
672 673 674 675
}

static void omap_dma_free_chan_resources(struct dma_chan *chan)
{
676
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
677 678
	struct omap_chan *c = to_omap_dma_chan(chan);

679 680 681 682 683 684 685
	if (!od->legacy) {
		spin_lock_irq(&od->irq_lock);
		od->irq_enable_mask &= ~BIT(c->dma_ch);
		omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
		spin_unlock_irq(&od->irq_lock);
	}

686
	c->channel_base = NULL;
687
	od->lch_map[c->dma_ch] = NULL;
688 689 690
	vchan_free_chan_resources(&c->vc);
	omap_free_dma(c->dma_ch);

691 692
	dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
		c->dma_sig);
693
	c->dma_sig = 0;
694 695
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static size_t omap_dma_sg_size(struct omap_sg *sg)
{
	return sg->en * sg->fn;
}

static size_t omap_dma_desc_size(struct omap_desc *d)
{
	unsigned i;
	size_t size;

	for (size = i = 0; i < d->sglen; i++)
		size += omap_dma_sg_size(&d->sg[i]);

	return size * es_bytes[d->es];
}

static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
{
	unsigned i;
	size_t size, es_size = es_bytes[d->es];

	for (size = i = 0; i < d->sglen; i++) {
		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;

		if (size)
			size += this_size;
		else if (addr >= d->sg[i].addr &&
			 addr < d->sg[i].addr + this_size)
			size += d->sg[i].addr + this_size - addr;
	}
	return size;
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
/*
 * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
 * read before the DMA controller finished disabling the channel.
 */
static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	uint32_t val;

	val = omap_dma_chan_read(c, reg);
	if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
		val = omap_dma_chan_read(c, reg);

	return val;
}

745 746 747
static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
748
	dma_addr_t addr, cdac;
749

750
	if (__dma_omap15xx(od->plat->dma_attr)) {
751
		addr = omap_dma_chan_read(c, CPC);
752 753 754
	} else {
		addr = omap_dma_chan_read_3_3(c, CSAC);
		cdac = omap_dma_chan_read_3_3(c, CDAC);
755 756 757 758 759 760

		/*
		 * CDAC == 0 indicates that the DMA transfer on the channel has
		 * not been started (no data has been transferred so far).
		 * Return the programmed source start address in this case.
		 */
761
		if (cdac == 0)
762
			addr = omap_dma_chan_read(c, CSSA);
763 764 765
	}

	if (dma_omap1())
766
		addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
767 768 769 770 771 772 773 774 775

	return addr;
}

static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
{
	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
	dma_addr_t addr;

776
	if (__dma_omap15xx(od->plat->dma_attr)) {
777
		addr = omap_dma_chan_read(c, CPC);
778 779
	} else {
		addr = omap_dma_chan_read_3_3(c, CDAC);
780 781

		/*
782 783 784 785
		 * CDAC == 0 indicates that the DMA transfer on the channel
		 * has not been started (no data has been transferred so
		 * far).  Return the programmed destination start address in
		 * this case.
786 787
		 */
		if (addr == 0)
788
			addr = omap_dma_chan_read(c, CDSA);
789 790 791
	}

	if (dma_omap1())
792
		addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
793 794 795 796

	return addr;
}

797 798 799
static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
	dma_cookie_t cookie, struct dma_tx_state *txstate)
{
800 801 802 803 804 805
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
806 807 808 809 810 811 812 813 814 815 816

	if (!c->paused && c->running) {
		uint32_t ccr = omap_dma_chan_read(c, CCR);
		/*
		 * The channel is no longer active, set the return value
		 * accordingly
		 */
		if (!(ccr & CCR_ENABLE))
			ret = DMA_COMPLETE;
	}

817
	if (ret == DMA_COMPLETE || !txstate)
818 819 820 821 822 823 824 825 826 827 828
		return ret;

	spin_lock_irqsave(&c->vc.lock, flags);
	vd = vchan_find_desc(&c->vc, cookie);
	if (vd) {
		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
		struct omap_desc *d = c->desc;
		dma_addr_t pos;

		if (d->dir == DMA_MEM_TO_DEV)
829
			pos = omap_dma_get_src_pos(c);
830
		else if (d->dir == DMA_DEV_TO_MEM  || d->dir == DMA_MEM_TO_MEM)
831
			pos = omap_dma_get_dst_pos(c);
832 833 834 835 836 837 838 839 840 841
		else
			pos = 0;

		txstate->residue = omap_dma_desc_size_pos(d, pos);
	} else {
		txstate->residue = 0;
	}
	spin_unlock_irqrestore(&c->vc.lock, flags);

	return ret;
842 843 844 845 846 847 848 849
}

static void omap_dma_issue_pending(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
850 851
	if (vchan_issue_pending(&c->vc) && !c->desc)
		omap_dma_start_desc(c);
852 853 854 855 856 857 858
	spin_unlock_irqrestore(&c->vc.lock, flags);
}

static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
{
859
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
860 861 862 863 864
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct scatterlist *sgent;
	struct omap_desc *d;
	dma_addr_t dev_addr;
865
	unsigned i, es, en, frame_bytes;
866
	bool ll_failed = false;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
885
		es = CSDP_DATA_TYPE_8;
886 887
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
888
		es = CSDP_DATA_TYPE_16;
889 890
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
891
		es = CSDP_DATA_TYPE_32;
892 893 894 895 896 897 898 899 900 901 902 903 904
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->es = es;
905

906
	d->ccr = c->ccr | CCR_SYNC_FRAME;
907
	if (dir == DMA_DEV_TO_MEM)
908
		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
909
	else
910
		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
911

912
	d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
913
	d->csdp = es;
914

915
	if (dma_omap1()) {
916
		d->cicr |= CICR_TOUT_IE;
917 918

		if (dir == DMA_DEV_TO_MEM)
919
			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
920
		else
921
			d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
922
	} else {
923
		if (dir == DMA_DEV_TO_MEM)
924
			d->ccr |= CCR_TRIGGER_SRC;
925

926
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
927
	}
928 929
	if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
		d->clnk_ctrl = c->dma_ch;
930 931 932 933 934 935 936 937 938 939 940 941

	/*
	 * Build our scatterlist entries: each contains the address,
	 * the number of elements (EN) in each frame, and the number of
	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
	 *
	 * Burst size translates to number of elements with frame sync.
	 * Note: DMA engine defines burst to be the number of dev-width
	 * transfers.
	 */
	en = burst;
	frame_bytes = es_bytes[es] * en;
942 943 944 945

	if (sglen >= 2)
		d->using_ll = od->ll123_supported;

946
	for_each_sg(sgl, sgent, sglen, i) {
947 948 949 950 951
		struct omap_sg *osg = &d->sg[i];

		osg->addr = sg_dma_address(sgent);
		osg->en = en;
		osg->fn = sg_dma_len(sgent) / frame_bytes;
952 953 954 955 956 957 958 959 960 961 962 963 964 965

		if (d->using_ll) {
			osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
						      &osg->t2_desc_paddr);
			if (!osg->t2_desc) {
				dev_err(chan->device->dev,
					"t2_desc[%d] allocation failed\n", i);
				ll_failed = true;
				d->using_ll = false;
				continue;
			}

			omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
		}
966 967
	}

968
	d->sglen = sglen;
969

970 971 972 973 974 975 976 977 978 979 980 981 982
	/* Release the dma_pool entries if one allocation failed */
	if (ll_failed) {
		for (i = 0; i < d->sglen; i++) {
			struct omap_sg *osg = &d->sg[i];

			if (osg->t2_desc) {
				dma_pool_free(od->desc_pool, osg->t2_desc,
					      osg->t2_desc_paddr);
				osg->t2_desc = NULL;
			}
		}
	}

983 984 985
	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

986 987
static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
988
	size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
989
{
990
	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
991 992 993 994
	struct omap_chan *c = to_omap_dma_chan(chan);
	enum dma_slave_buswidth dev_width;
	struct omap_desc *d;
	dma_addr_t dev_addr;
995
	unsigned es;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	u32 burst;

	if (dir == DMA_DEV_TO_MEM) {
		dev_addr = c->cfg.src_addr;
		dev_width = c->cfg.src_addr_width;
		burst = c->cfg.src_maxburst;
	} else if (dir == DMA_MEM_TO_DEV) {
		dev_addr = c->cfg.dst_addr;
		dev_width = c->cfg.dst_addr_width;
		burst = c->cfg.dst_maxburst;
	} else {
		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
		return NULL;
	}

	/* Bus width translates to the element size (ES) */
	switch (dev_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1014
		es = CSDP_DATA_TYPE_8;
1015 1016
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1017
		es = CSDP_DATA_TYPE_16;
1018 1019
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1020
		es = CSDP_DATA_TYPE_32;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		break;
	default: /* not reached */
		return NULL;
	}

	/* Now allocate and setup the descriptor. */
	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	d->dir = dir;
	d->dev_addr = dev_addr;
	d->fi = burst;
	d->es = es;
	d->sg[0].addr = buf_addr;
	d->sg[0].en = period_len / es_bytes[es];
	d->sg[0].fn = buf_len / period_len;
	d->sglen = 1;
1039

1040
	d->ccr = c->ccr;
1041
	if (dir == DMA_DEV_TO_MEM)
1042
		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
1043
	else
1044
		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
1045

1046
	d->cicr = CICR_DROP_IE;
1047
	if (flags & DMA_PREP_INTERRUPT)
1048
		d->cicr |= CICR_FRAME_IE;
1049

1050 1051 1052
	d->csdp = es;

	if (dma_omap1()) {
1053
		d->cicr |= CICR_TOUT_IE;
1054 1055

		if (dir == DMA_DEV_TO_MEM)
1056
			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
1057
		else
1058
			d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
1059
	} else {
1060
		if (burst)
1061 1062 1063
			d->ccr |= CCR_SYNC_PACKET;
		else
			d->ccr |= CCR_SYNC_ELEMENT;
1064

1065
		if (dir == DMA_DEV_TO_MEM) {
1066
			d->ccr |= CCR_TRIGGER_SRC;
1067 1068 1069 1070
			d->csdp |= CSDP_DST_PACKED;
		} else {
			d->csdp |= CSDP_SRC_PACKED;
		}
1071

1072
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1073

1074
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1075 1076
	}

1077 1078 1079 1080 1081
	if (__dma_omap15xx(od->plat->dma_attr))
		d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
	else
		d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;

1082
	c->cyclic = true;
1083

1084
	return vchan_tx_prep(&c->vc, &d->vd, flags);
1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct omap_desc *d;
	uint8_t data_type;

	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	data_type = __ffs((src | dest | len));
	if (data_type > CSDP_DATA_TYPE_32)
		data_type = CSDP_DATA_TYPE_32;

	d->dir = DMA_MEM_TO_MEM;
	d->dev_addr = src;
	d->fi = 0;
	d->es = data_type;
	d->sg[0].en = len / BIT(data_type);
	d->sg[0].fn = 1;
	d->sg[0].addr = dest;
	d->sglen = 1;
	d->ccr = c->ccr;
	d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;

1114
	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	d->csdp = data_type;

	if (dma_omap1()) {
		d->cicr |= CICR_TOUT_IE;
		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
	} else {
		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
	}

	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
	struct dma_chan *chan, struct dma_interleaved_template *xt,
	unsigned long flags)
{
	struct omap_chan *c = to_omap_dma_chan(chan);
	struct omap_desc *d;
	struct omap_sg *sg;
	uint8_t data_type;
	size_t src_icg, dst_icg;

	/* Slave mode is not supported */
	if (is_slave_direction(xt->dir))
		return NULL;

	if (xt->frame_size != 1 || xt->numf == 0)
		return NULL;

	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
	if (!d)
		return NULL;

	data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
	if (data_type > CSDP_DATA_TYPE_32)
		data_type = CSDP_DATA_TYPE_32;

	sg = &d->sg[0];
	d->dir = DMA_MEM_TO_MEM;
	d->dev_addr = xt->src_start;
	d->es = data_type;
	sg->en = xt->sgl[0].size / BIT(data_type);
	sg->fn = xt->numf;
	sg->addr = xt->dst_start;
	d->sglen = 1;
	d->ccr = c->ccr;

	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
	if (src_icg) {
		d->ccr |= CCR_SRC_AMODE_DBLIDX;
		d->ei = 1;
		d->fi = src_icg;
	} else if (xt->src_inc) {
		d->ccr |= CCR_SRC_AMODE_POSTINC;
		d->fi = 0;
	} else {
		dev_err(chan->device->dev,
			"%s: SRC constant addressing is not supported\n",
			__func__);
		kfree(d);
		return NULL;
	}

	if (dst_icg) {
		d->ccr |= CCR_DST_AMODE_DBLIDX;
		sg->ei = 1;
		sg->fi = dst_icg;
	} else if (xt->dst_inc) {
		d->ccr |= CCR_DST_AMODE_POSTINC;
		sg->fi = 0;
	} else {
		dev_err(chan->device->dev,
			"%s: DST constant addressing is not supported\n",
			__func__);
		kfree(d);
		return NULL;
	}

	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;

	d->csdp = data_type;

	if (dma_omap1()) {
		d->cicr |= CICR_TOUT_IE;
		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
	} else {
		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
	}

	return vchan_tx_prep(&c->vc, &d->vd, flags);
}

1213
static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
1214
{
1215 1216
	struct omap_chan *c = to_omap_dma_chan(chan);

1217 1218 1219 1220 1221 1222 1223 1224 1225
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
		return -EINVAL;

	memcpy(&c->cfg, cfg, sizeof(c->cfg));

	return 0;
}

1226
static int omap_dma_terminate_all(struct dma_chan *chan)
1227
{
1228
	struct omap_chan *c = to_omap_dma_chan(chan);
1229 1230 1231 1232 1233 1234 1235
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&c->vc.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
1236
	 * after omap_dma_stop() returns (even if it does, it will see
1237 1238 1239
	 * c->desc is NULL and exit.)
	 */
	if (c->desc) {
1240
		omap_dma_desc_free(&c->desc->vd);
1241
		c->desc = NULL;
1242 1243
		/* Avoid stopping the dma twice */
		if (!c->paused)
1244
			omap_dma_stop(c);
1245 1246
	}

1247 1248
	if (c->cyclic) {
		c->cyclic = false;
1249
		c->paused = false;
1250 1251
	}

1252 1253 1254 1255 1256 1257 1258
	vchan_get_all_descriptors(&c->vc, &head);
	spin_unlock_irqrestore(&c->vc.lock, flags);
	vchan_dma_desc_free_list(&c->vc, &head);

	return 0;
}

1259 1260 1261 1262 1263 1264 1265
static void omap_dma_synchronize(struct dma_chan *chan)
{
	struct omap_chan *c = to_omap_dma_chan(chan);

	vchan_synchronize(&c->vc);
}

1266
static int omap_dma_pause(struct dma_chan *chan)
1267
{
1268 1269
	struct omap_chan *c = to_omap_dma_chan(chan);

1270 1271 1272 1273 1274
	/* Pause/Resume only allowed with cyclic mode */
	if (!c->cyclic)
		return -EINVAL;

	if (!c->paused) {
1275
		omap_dma_stop(c);
1276 1277 1278 1279
		c->paused = true;
	}

	return 0;
1280 1281
}

1282
static int omap_dma_resume(struct dma_chan *chan)
1283
{
1284 1285
	struct omap_chan *c = to_omap_dma_chan(chan);

1286 1287 1288 1289 1290
	/* Pause/Resume only allowed with cyclic mode */
	if (!c->cyclic)
		return -EINVAL;

	if (c->paused) {
1291 1292
		mb();

1293 1294 1295
		/* Restore channel link register */
		omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);

1296
		omap_dma_start(c, c->desc);
1297 1298 1299 1300
		c->paused = false;
	}

	return 0;
1301 1302
}

1303
static int omap_dma_chan_init(struct omap_dmadev *od)
1304 1305 1306 1307 1308 1309 1310
{
	struct omap_chan *c;

	c = kzalloc(sizeof(*c), GFP_KERNEL);
	if (!c)
		return -ENOMEM;

1311
	c->reg_map = od->reg_map;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	c->vc.desc_free = omap_dma_desc_free;
	vchan_init(&c->vc, &od->ddev);

	return 0;
}

static void omap_dma_free(struct omap_dmadev *od)
{
	while (!list_empty(&od->ddev.channels)) {
		struct omap_chan *c = list_first_entry(&od->ddev.channels,
			struct omap_chan, vc.chan.device_node);

		list_del(&c->vc.chan.device_node);
		tasklet_kill(&c->vc.task);
		kfree(c);
	}
}

1330 1331 1332 1333
#define OMAP_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1334 1335 1336
static int omap_dma_probe(struct platform_device *pdev)
{
	struct omap_dmadev *od;
1337
	struct resource *res;
1338
	int rc, i, irq;
1339

1340
	od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1341 1342 1343
	if (!od)
		return -ENOMEM;

1344 1345 1346 1347 1348
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	od->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(od->base))
		return PTR_ERR(od->base);

1349 1350 1351 1352
	od->plat = omap_get_plat_info();
	if (!od->plat)
		return -EPROBE_DEFER;

1353 1354
	od->reg_map = od->plat->reg_map;

1355
	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1356
	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1357
	dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1358
	dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
1359 1360 1361 1362 1363
	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
	od->ddev.device_tx_status = omap_dma_tx_status;
	od->ddev.device_issue_pending = omap_dma_issue_pending;
	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1364
	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1365
	od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1366
	od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
1367
	od->ddev.device_config = omap_dma_slave_config;
1368 1369 1370
	od->ddev.device_pause = omap_dma_pause;
	od->ddev.device_resume = omap_dma_resume;
	od->ddev.device_terminate_all = omap_dma_terminate_all;
1371
	od->ddev.device_synchronize = omap_dma_synchronize;
1372 1373 1374 1375
	od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
	od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
	od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1376 1377 1378
	od->ddev.dev = &pdev->dev;
	INIT_LIST_HEAD(&od->ddev.channels);
	spin_lock_init(&od->lock);
1379
	spin_lock_init(&od->irq_lock);
1380

1381 1382 1383 1384 1385 1386
	if (!pdev->dev.of_node) {
		od->dma_requests = od->plat->dma_attr->lch_count;
		if (unlikely(!od->dma_requests))
			od->dma_requests = OMAP_SDMA_REQUESTS;
	} else if (of_property_read_u32(pdev->dev.of_node, "dma-requests",
					&od->dma_requests)) {
1387 1388 1389
		dev_info(&pdev->dev,
			 "Missing dma-requests property, using %u.\n",
			 OMAP_SDMA_REQUESTS);
1390
		od->dma_requests = OMAP_SDMA_REQUESTS;
1391 1392
	}

1393 1394 1395 1396 1397 1398
	od->lch_map = devm_kcalloc(&pdev->dev, od->dma_requests,
				   sizeof(*od->lch_map), GFP_KERNEL);
	if (!od->lch_map)
		return -ENOMEM;

	for (i = 0; i < od->dma_requests; i++) {
1399
		rc = omap_dma_chan_init(od);
1400 1401 1402 1403 1404 1405
		if (rc) {
			omap_dma_free(od);
			return rc;
		}
	}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	irq = platform_get_irq(pdev, 1);
	if (irq <= 0) {
		dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
		od->legacy = true;
	} else {
		/* Disable all interrupts */
		od->irq_enable_mask = 0;
		omap_dma_glbl_write(od, IRQENABLE_L1, 0);

		rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
				      IRQF_SHARED, "omap-dma-engine", od);
		if (rc)
			return rc;
	}

1421 1422 1423
	if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
		od->ll123_supported = true;

1424 1425 1426 1427
	od->ddev.filter.map = od->plat->slave_map;
	od->ddev.filter.mapcnt = od->plat->slavecnt;
	od->ddev.filter.fn = omap_dma_filter_fn;

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (od->ll123_supported) {
		od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
						&pdev->dev,
						sizeof(struct omap_type2_desc),
						4, 0);
		if (!od->desc_pool) {
			dev_err(&pdev->dev,
				"unable to allocate descriptor pool\n");
			od->ll123_supported = false;
		}
	}

1440 1441 1442 1443 1444
	rc = dma_async_device_register(&od->ddev);
	if (rc) {
		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
			rc);
		omap_dma_free(od);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		return rc;
	}

	platform_set_drvdata(pdev, od);

	if (pdev->dev.of_node) {
		omap_dma_info.dma_cap = od->ddev.cap_mask;

		/* Device-tree DMA controller registration */
		rc = of_dma_controller_register(pdev->dev.of_node,
				of_dma_simple_xlate, &omap_dma_info);
		if (rc) {
			pr_warn("OMAP-DMA: failed to register DMA controller\n");
			dma_async_device_unregister(&od->ddev);
			omap_dma_free(od);
		}
1461 1462
	}

1463 1464
	dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
		 od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
1465 1466 1467 1468 1469 1470 1471

	return rc;
}

static int omap_dma_remove(struct platform_device *pdev)
{
	struct omap_dmadev *od = platform_get_drvdata(pdev);
1472
	int irq;
1473

1474 1475 1476
	if (pdev->dev.of_node)
		of_dma_controller_free(pdev->dev.of_node);

1477 1478 1479
	irq = platform_get_irq(pdev, 1);
	devm_free_irq(&pdev->dev, irq, od);

1480
	dma_async_device_unregister(&od->ddev);
1481 1482 1483 1484 1485 1486

	if (!od->legacy) {
		/* Disable all interrupts */
		omap_dma_glbl_write(od, IRQENABLE_L0, 0);
	}

1487 1488 1489
	if (od->ll123_supported)
		dma_pool_destroy(od->desc_pool);

1490 1491 1492 1493 1494
	omap_dma_free(od);

	return 0;
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static const struct of_device_id omap_dma_match[] = {
	{ .compatible = "ti,omap2420-sdma", },
	{ .compatible = "ti,omap2430-sdma", },
	{ .compatible = "ti,omap3430-sdma", },
	{ .compatible = "ti,omap3630-sdma", },
	{ .compatible = "ti,omap4430-sdma", },
	{},
};
MODULE_DEVICE_TABLE(of, omap_dma_match);

1505 1506 1507 1508 1509
static struct platform_driver omap_dma_driver = {
	.probe	= omap_dma_probe,
	.remove	= omap_dma_remove,
	.driver = {
		.name = "omap-dma-engine",
1510
		.of_match_table = of_match_ptr(omap_dma_match),
1511 1512 1513 1514 1515 1516
	},
};

bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &omap_dma_driver.driver) {
1517
		struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1518 1519 1520
		struct omap_chan *c = to_omap_dma_chan(chan);
		unsigned req = *(unsigned *)param;

1521 1522 1523 1524
		if (req <= od->dma_requests) {
			c->dma_sig = req;
			return true;
		}
1525 1526 1527 1528 1529 1530 1531
	}
	return false;
}
EXPORT_SYMBOL_GPL(omap_dma_filter_fn);

static int omap_dma_init(void)
{
1532
	return platform_driver_register(&omap_dma_driver);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
}
subsys_initcall(omap_dma_init);

static void __exit omap_dma_exit(void)
{
	platform_driver_unregister(&omap_dma_driver);
}
module_exit(omap_dma_exit);

MODULE_AUTHOR("Russell King");
MODULE_LICENSE("GPL");