vmscan.c 80.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

L
Linus Torvalds 已提交
51 52 53 54
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

55 56 57
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

58 59 60
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

61 62
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
63
	/* This context's GFP mask */
A
Al Viro 已提交
64
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
65 66 67

	int may_writepage;

68 69
	/* Can mapped pages be reclaimed? */
	int may_unmap;
70

71 72 73
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

74
	int swappiness;
75 76

	int all_unreclaimable;
A
Andy Whitcroft 已提交
77 78

	int order;
79 80 81 82

	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

83 84 85 86 87 88
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;

89 90 91 92
	/* Pluggable isolate pages callback */
	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
			unsigned long *scanned, int order, int mode,
			struct zone *z, struct mem_cgroup *mem_cont,
93
			int active, int file);
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
130
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
131 132 133 134

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

135
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
136
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
137
#else
138
#define scanning_global_lru(sc)	(1)
139 140
#endif

141 142 143
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
144
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
145 146
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

147 148 149
	return &zone->reclaim_stat;
}

150 151
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
152
{
153
	if (!scanning_global_lru(sc))
154 155
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

156 157 158 159
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
160 161 162
/*
 * Add a shrinker callback to be called from the vm
 */
163
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
164
{
165 166 167 168
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
169
}
170
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
171 172 173 174

/*
 * Remove one
 */
175
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
176 177 178 179 180
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
181
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
182 183 184 185 186 187 188 189 190 191

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
192
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
193 194 195 196 197 198 199
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
200 201
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
202
 */
203 204
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
205 206
{
	struct shrinker *shrinker;
207
	unsigned long ret = 0;
L
Linus Torvalds 已提交
208 209 210 211 212

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
213
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
214 215 216 217

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
218
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
219 220

		delta = (4 * scanned) / shrinker->seeks;
221
		delta *= max_pass;
L
Linus Torvalds 已提交
222 223
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
224
		if (shrinker->nr < 0) {
225 226 227
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
228 229 230 231 232 233 234 235 236 237
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
238 239 240 241 242 243 244

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
245
			int nr_before;
L
Linus Torvalds 已提交
246

247 248
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
249 250
			if (shrink_ret == -1)
				break;
251 252
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
253
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
254 255 256 257 258 259 260 261
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
262
	return ret;
L
Linus Torvalds 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
288 289 290 291 292
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
293
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
294 295 296 297
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
298
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
323 324
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
325 326 327
	unlock_page(page);
}

328 329 330 331 332 333
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

334 335 336 337 338 339 340 341 342 343 344 345
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
346
/*
A
Andrew Morton 已提交
347 348
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
349
 */
350 351
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
352 353 354 355 356 357 358 359
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
360
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
376
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
377 378
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
379
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
395 396
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
397 398 399 400 401 402 403 404
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
405
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
406 407 408
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
409 410 411 412 413 414 415 416 417

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
418 419 420 421
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
422
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
423 424 425 426 427 428
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

429
/*
N
Nick Piggin 已提交
430 431
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
432
 */
N
Nick Piggin 已提交
433
static int __remove_mapping(struct address_space *mapping, struct page *page)
434
{
435 436
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
437

N
Nick Piggin 已提交
438
	spin_lock_irq(&mapping->tree_lock);
439
	/*
N
Nick Piggin 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
463
	 */
N
Nick Piggin 已提交
464
	if (!page_freeze_refs(page, 2))
465
		goto cannot_free;
N
Nick Piggin 已提交
466 467 468
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
469
		goto cannot_free;
N
Nick Piggin 已提交
470
	}
471 472 473 474

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
475
		spin_unlock_irq(&mapping->tree_lock);
476
		swapcache_free(swap, page);
N
Nick Piggin 已提交
477 478
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
479
		spin_unlock_irq(&mapping->tree_lock);
480
		mem_cgroup_uncharge_cache_page(page);
481 482 483 484 485
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
486
	spin_unlock_irq(&mapping->tree_lock);
487 488 489
	return 0;
}

N
Nick Piggin 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
523
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
537
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
538 539 540 541 542 543 544 545
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
546 547 548 549 550 551 552 553 554 555
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

574 575 576 577 578
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
579 580 581
	put_page(page);		/* drop ref from isolate */
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
	unsigned long vm_flags;
	int referenced;

	referenced = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	if (!referenced)
		return PAGEREF_RECLAIM;

	/* Lumpy reclaim - ignore references */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

	if (page_mapping_inuse(page))
		return PAGEREF_ACTIVATE;

	/* Reclaim if clean, defer dirty pages to writeback */
	return PAGEREF_RECLAIM_CLEAN;
}

L
Linus Torvalds 已提交
616
/*
A
Andrew Morton 已提交
617
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
618
 */
A
Andrew Morton 已提交
619
static unsigned long shrink_page_list(struct list_head *page_list,
620 621
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
622 623 624 625
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
626
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
627 628 629 630 631

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
632
		enum page_references references;
L
Linus Torvalds 已提交
633 634 635 636 637 638 639 640 641
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
642
		if (!trylock_page(page))
L
Linus Torvalds 已提交
643 644
			goto keep;

N
Nick Piggin 已提交
645
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
646 647

		sc->nr_scanned++;
648

N
Nick Piggin 已提交
649 650
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
651

652
		if (!sc->may_unmap && page_mapped(page))
653 654
			goto keep_locked;

L
Linus Torvalds 已提交
655 656 657 658
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

659 660 661 662 663 664 665 666 667 668 669 670 671 672
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
673
			else
674 675
				goto keep_locked;
		}
L
Linus Torvalds 已提交
676

677 678 679
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
680
			goto activate_locked;
681 682 683 684
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
685 686 687 688 689

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
690
		if (PageAnon(page) && !PageSwapCache(page)) {
691 692
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
693
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
694
				goto activate_locked;
695
			may_enter_fs = 1;
N
Nick Piggin 已提交
696
		}
L
Linus Torvalds 已提交
697 698 699 700 701 702 703 704

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
705
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
706 707 708 709
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
710 711
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
712 713 714 715 716 717
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
718
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
719
				goto keep_locked;
720
			if (!may_enter_fs)
L
Linus Torvalds 已提交
721
				goto keep_locked;
722
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
723 724 725
				goto keep_locked;

			/* Page is dirty, try to write it out here */
726
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
727 728 729 730 731
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
732
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
733 734 735 736 737
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
738
				if (!trylock_page(page))
L
Linus Torvalds 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
758
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
759 760 761 762 763 764 765 766 767 768
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
769
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
770 771
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
788 789
		}

N
Nick Piggin 已提交
790
		if (!mapping || !__remove_mapping(mapping, page))
791
			goto keep_locked;
L
Linus Torvalds 已提交
792

N
Nick Piggin 已提交
793 794 795 796 797 798 799 800
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
801
free_it:
802
		nr_reclaimed++;
N
Nick Piggin 已提交
803 804 805 806
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
807 808
		continue;

N
Nick Piggin 已提交
809
cull_mlocked:
810 811
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
812 813 814 815
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
816
activate_locked:
817 818
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
819
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
820
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
821 822 823 824 825 826
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
827
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
828 829 830
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
831
		__pagevec_free(&freed_pvec);
832
	count_vm_events(PGACTIVATE, pgactivate);
833
	return nr_reclaimed;
L
Linus Torvalds 已提交
834 835
}

A
Andy Whitcroft 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/* LRU Isolation modes. */
#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */

/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
851
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

867
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
868 869
		return ret;

L
Lee Schermerhorn 已提交
870 871 872 873 874 875 876 877
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
878
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
879

A
Andy Whitcroft 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
907 908
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
909
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
910 911 912
 *
 * returns how many pages were moved onto *@dst.
 */
913 914
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
915
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
916
{
917
	unsigned long nr_taken = 0;
918
	unsigned long scan;
L
Linus Torvalds 已提交
919

920
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
921 922 923 924 925 926
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
927 928 929
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
930
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
931

932
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
933 934
		case 0:
			list_move(&page->lru, dst);
935
			mem_cgroup_del_lru(page);
936
			nr_taken++;
A
Andy Whitcroft 已提交
937 938 939 940 941
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
942
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
943
			continue;
944

A
Andy Whitcroft 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
977

A
Andy Whitcroft 已提交
978 979 980
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
981 982 983 984 985 986 987 988 989 990

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

991
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
992
				list_move(&cursor_page->lru, dst);
993
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
994 995 996 997
				nr_taken++;
				scan++;
			}
		}
L
Linus Torvalds 已提交
998 999 1000 1001 1002 1003
	}

	*scanned = scan;
	return nr_taken;
}

1004 1005 1006 1007 1008
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1009
					int active, int file)
1010
{
1011
	int lru = LRU_BASE;
1012
	if (active)
1013 1014 1015 1016
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1017
								mode, file);
1018 1019
}

A
Andy Whitcroft 已提交
1020 1021 1022 1023
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1024 1025
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1026 1027
{
	int nr_active = 0;
1028
	int lru;
A
Andy Whitcroft 已提交
1029 1030
	struct page *page;

1031
	list_for_each_entry(page, page_list, lru) {
1032
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1033
		if (PageActive(page)) {
1034
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1035 1036 1037
			ClearPageActive(page);
			nr_active++;
		}
1038 1039
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1040 1041 1042 1043

	return nr_active;
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1055 1056 1057
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1078
			int lru = page_lru(page);
1079 1080
			ret = 0;
			ClearPageLRU(page);
1081 1082

			del_page_from_lru_list(zone, page, lru);
1083 1084 1085 1086 1087 1088
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1114
/*
A
Andrew Morton 已提交
1115 1116
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1117
 */
A
Andrew Morton 已提交
1118
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1119 1120
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1121 1122 1123
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1124
	unsigned long nr_scanned = 0;
1125
	unsigned long nr_reclaimed = 0;
1126
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1127 1128
	int lumpy_reclaim = 0;

1129
	while (unlikely(too_many_isolated(zone, file, sc))) {
1130
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1131 1132 1133 1134 1135 1136

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 *
	 * We use the same threshold as pageout congestion_wait below.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_reclaim = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		lumpy_reclaim = 1;
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1153
	do {
L
Linus Torvalds 已提交
1154
		struct page *page;
1155 1156 1157
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1158
		unsigned long nr_active;
1159
		unsigned int count[NR_LRU_LISTS] = { 0, };
1160
		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1161 1162
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1163

K
KOSAKI Motohiro 已提交
1164
		nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1165 1166
			     &page_list, &nr_scan, sc->order, mode,
				zone, sc->mem_cgroup, 0, file);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

		if (scanning_global_lru(sc)) {
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
		}

		if (nr_taken == 0)
			goto done;

1181
		nr_active = clear_active_flags(&page_list, count);
1182
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1193 1194 1195 1196
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1197

H
Huang Shijie 已提交
1198 1199
		reclaim_stat->recent_scanned[0] += nr_anon;
		reclaim_stat->recent_scanned[1] += nr_file;
K
KOSAKI Motohiro 已提交
1200

L
Linus Torvalds 已提交
1201 1202
		spin_unlock_irq(&zone->lru_lock);

1203
		nr_scanned += nr_scan;
1204 1205 1206 1207 1208 1209 1210 1211 1212
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1213
		    lumpy_reclaim) {
1214
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1215 1216 1217 1218 1219

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1220
			nr_active = clear_active_flags(&page_list, count);
1221 1222 1223 1224 1225 1226
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1227
		nr_reclaimed += nr_freed;
1228

N
Nick Piggin 已提交
1229
		local_irq_disable();
1230
		if (current_is_kswapd())
1231
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1232
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1233 1234

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1235 1236 1237 1238
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1239
			int lru;
L
Linus Torvalds 已提交
1240
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1241
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1242
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1252
			if (is_active_lru(lru)) {
1253
				int file = is_file_lru(lru);
1254
				reclaim_stat->recent_rotated[file]++;
1255
			}
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1262 1263 1264
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1265
  	} while (nr_scanned < max_scan);
1266

L
Linus Torvalds 已提交
1267
done:
1268
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1269
	pagevec_release(&pvec);
1270
	return nr_reclaimed;
L
Linus Torvalds 已提交
1271 1272
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

L
Linus Torvalds 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1337

A
Andrew Morton 已提交
1338
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1339
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1340
{
1341
	unsigned long nr_taken;
1342
	unsigned long pgscanned;
1343
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1344
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1345
	LIST_HEAD(l_active);
1346
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1347
	struct page *page;
1348
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1349
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1350 1351 1352

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1353
	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1354
					ISOLATE_ACTIVE, zone,
1355
					sc->mem_cgroup, 1, file);
1356 1357 1358 1359
	/*
	 * zone->pages_scanned is used for detect zone's oom
	 * mem_cgroup remembers nr_scan by itself.
	 */
1360
	if (scanning_global_lru(sc)) {
1361
		zone->pages_scanned += pgscanned;
1362
	}
1363
	reclaim_stat->recent_scanned[file] += nr_taken;
1364

1365
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1366
	if (file)
1367
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1368
	else
1369
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1370
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1371 1372 1373 1374 1375 1376
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1377

L
Lee Schermerhorn 已提交
1378 1379 1380 1381 1382
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1383 1384
		/* page_referenced clears PageReferenced */
		if (page_mapping_inuse(page) &&
1385
		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1386
			nr_rotated++;
1387 1388 1389 1390 1391 1392 1393 1394 1395
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1396
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1397 1398 1399 1400
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1401

1402
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1403 1404 1405
		list_add(&page->lru, &l_inactive);
	}

1406
	/*
1407
	 * Move pages back to the lru list.
1408
	 */
1409
	spin_lock_irq(&zone->lru_lock);
1410
	/*
1411 1412 1413 1414
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1415
	 */
1416
	reclaim_stat->recent_rotated[file] += nr_rotated;
1417

1418 1419 1420 1421
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1422
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1423
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1424 1425
}

1426
static int inactive_anon_is_low_global(struct zone *zone)
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1451
	if (scanning_global_lru(sc))
1452 1453
		low = inactive_anon_is_low_global(zone);
	else
1454
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1455 1456 1457
	return low;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1494 1495 1496 1497 1498 1499 1500 1501 1502
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1503
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1504 1505
	struct zone *zone, struct scan_control *sc, int priority)
{
1506 1507
	int file = is_file_lru(lru);

1508 1509 1510
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1511 1512 1513
		return 0;
	}

R
Rik van Riel 已提交
1514
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
}

/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
 * percent[0] specifies how much pressure to put on ram/swap backed
 * memory, while percent[1] determines pressure on the file LRUs.
 */
static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
					unsigned long *percent)
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1532
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1533

1534 1535 1536 1537 1538 1539 1540
	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		percent[0] = 0;
		percent[1] = 100;
		return;
	}

1541 1542 1543 1544
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1545

1546
	if (scanning_global_lru(sc)) {
1547 1548 1549
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1550
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1551 1552 1553 1554
			percent[0] = 100;
			percent[1] = 0;
			return;
		}
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1568
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1569
		spin_lock_irq(&zone->lru_lock);
1570 1571
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1572 1573 1574
		spin_unlock_irq(&zone->lru_lock);
	}

1575
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1576
		spin_lock_irq(&zone->lru_lock);
1577 1578
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1590 1591 1592
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1593
	 */
1594 1595
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1596

1597 1598
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1599 1600 1601 1602

	/* Normalize to percentages */
	percent[0] = 100 * ap / (ap + fp + 1);
	percent[1] = 100 - percent[0];
1603 1604
}

1605 1606 1607 1608 1609
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
K
KOSAKI Motohiro 已提交
1610
				       unsigned long *nr_saved_scan)
1611 1612 1613 1614 1615 1616
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

K
KOSAKI Motohiro 已提交
1617
	if (nr >= SWAP_CLUSTER_MAX)
1618 1619 1620 1621 1622 1623
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}
1624

L
Linus Torvalds 已提交
1625 1626 1627
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1628
static void shrink_zone(int priority, struct zone *zone,
1629
				struct scan_control *sc)
L
Linus Torvalds 已提交
1630
{
1631
	unsigned long nr[NR_LRU_LISTS];
1632
	unsigned long nr_to_scan;
1633
	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1634
	enum lru_list l;
1635
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1636
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1637
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
L
Linus Torvalds 已提交
1638

1639
	get_scan_ratio(zone, sc, percent);
1640

L
Lee Schermerhorn 已提交
1641
	for_each_evictable_lru(l) {
1642
		int file = is_file_lru(l);
1643
		unsigned long scan;
1644

1645 1646 1647 1648 1649
		if (percent[file] == 0) {
			nr[l] = 0;
			continue;
		}

1650
		scan = zone_nr_lru_pages(zone, sc, l);
1651
		if (priority) {
1652 1653 1654
			scan >>= priority;
			scan = (scan * percent[file]) / 100;
		}
1655
		nr[l] = nr_scan_try_batch(scan,
K
KOSAKI Motohiro 已提交
1656
					  &reclaim_stat->nr_saved_scan[l]);
1657
	}
L
Linus Torvalds 已提交
1658

1659 1660
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1661
		for_each_evictable_lru(l) {
1662
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1663 1664
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1665
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1666

1667 1668
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1669
			}
L
Linus Torvalds 已提交
1670
		}
1671 1672 1673 1674 1675 1676 1677 1678
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1679
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1680
			break;
L
Linus Torvalds 已提交
1681 1682
	}

1683 1684
	sc->nr_reclaimed = nr_reclaimed;

1685 1686 1687 1688
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1689
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1690 1691
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1692
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697 1698 1699
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1700 1701
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1702 1703
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1704 1705 1706
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1707 1708 1709 1710
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1711
static void shrink_zones(int priority, struct zonelist *zonelist,
1712
					struct scan_control *sc)
L
Linus Torvalds 已提交
1713
{
1714
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1715
	struct zoneref *z;
1716
	struct zone *zone;
1717

1718
	sc->all_unreclaimable = 1;
1719 1720
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1721
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1722
			continue;
1723 1724 1725 1726
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1727
		if (scanning_global_lru(sc)) {
1728 1729 1730
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1731

1732
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
				continue;	/* Let kswapd poll it */
			sc->all_unreclaimable = 0;
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			sc->all_unreclaimable = 0;
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1744

1745
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1746 1747
	}
}
1748

L
Linus Torvalds 已提交
1749 1750 1751 1752 1753 1754 1755 1756
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1757 1758 1759 1760
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1761 1762 1763
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1764
 */
1765
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1766
					struct scan_control *sc)
L
Linus Torvalds 已提交
1767 1768
{
	int priority;
1769
	unsigned long ret = 0;
1770
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1771 1772
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
1773
	struct zoneref *z;
1774
	struct zone *zone;
1775
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1776
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1777

1778 1779
	delayacct_freepages_start();

1780
	if (scanning_global_lru(sc))
1781 1782 1783 1784
		count_vm_event(ALLOCSTALL);
	/*
	 * mem_cgroup will not do shrink_slab.
	 */
1785
	if (scanning_global_lru(sc)) {
1786
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
L
Linus Torvalds 已提交
1787

1788 1789
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
L
Linus Torvalds 已提交
1790

1791
			lru_pages += zone_reclaimable_pages(zone);
1792
		}
L
Linus Torvalds 已提交
1793 1794 1795
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1796
		sc->nr_scanned = 0;
1797 1798
		if (!priority)
			disable_swap_token();
1799
		shrink_zones(priority, zonelist, sc);
1800 1801 1802 1803
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1804
		if (scanning_global_lru(sc)) {
1805
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1806
			if (reclaim_state) {
1807
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1808 1809
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1810
		}
1811
		total_scanned += sc->nr_scanned;
1812
		if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1813
			ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1824 1825
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1826
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1827
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1828 1829 1830
		}

		/* Take a nap, wait for some writeback to complete */
1831 1832
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1833
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1834
	}
1835
	/* top priority shrink_zones still had more to do? don't OOM, then */
1836
	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1837
		ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1838
out:
1839 1840 1841 1842 1843 1844 1845 1846 1847
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1848

1849
	if (scanning_global_lru(sc)) {
1850
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1851 1852 1853 1854 1855 1856 1857 1858

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1859

1860 1861
	delayacct_freepages_end();

L
Linus Torvalds 已提交
1862 1863 1864
	return ret;
}

1865
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1866
				gfp_t gfp_mask, nodemask_t *nodemask)
1867 1868 1869 1870
{
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
1871
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1872
		.may_unmap = 1,
1873
		.may_swap = 1,
1874 1875 1876 1877
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1878
		.nodemask = nodemask,
1879 1880
	};

1881
	return do_try_to_free_pages(zonelist, &sc);
1882 1883
}

1884
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
						struct zone *zone, int nid)
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
		.isolate_pages = mem_cgroup_isolate_pages,
	};
	nodemask_t nm  = nodemask_of_node(nid);

	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	sc.nodemask = &nm;
	sc.nr_reclaimed = 0;
	sc.nr_scanned = 0;
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
	return sc.nr_reclaimed;
}

1918
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1919 1920 1921
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1922
{
1923
	struct zonelist *zonelist;
1924 1925
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1926
		.may_unmap = 1,
1927
		.may_swap = !noswap,
1928
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1929
		.swappiness = swappiness,
1930 1931 1932
		.order = 0,
		.mem_cgroup = mem_cont,
		.isolate_pages = mem_cgroup_isolate_pages,
1933
		.nodemask = NULL, /* we don't care the placement */
1934 1935
	};

1936 1937 1938 1939
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1940 1941 1942
}
#endif

1943
/* is kswapd sleeping prematurely? */
1944
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1945
{
1946
	int i;
1947 1948 1949 1950 1951 1952

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
1953 1954 1955 1956 1957 1958
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

1959
		if (zone->all_unreclaimable)
1960 1961
			continue;

1962 1963 1964
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
1965
	}
1966 1967 1968 1969

	return 0;
}

L
Linus Torvalds 已提交
1970 1971
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1972
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1985 1986 1987 1988 1989
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
1990
 */
1991
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
1992 1993 1994 1995
{
	int all_zones_ok;
	int priority;
	int i;
1996
	unsigned long total_scanned;
L
Linus Torvalds 已提交
1997
	struct reclaim_state *reclaim_state = current->reclaim_state;
1998 1999
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2000
		.may_unmap = 1,
2001
		.may_swap = 1,
2002 2003 2004 2005 2006
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2007
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2008
		.order = order,
2009 2010
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
2011
	};
2012 2013
	/*
	 * temp_priority is used to remember the scanning priority at which
2014 2015
	 * this zone was successfully refilled to
	 * free_pages == high_wmark_pages(zone).
2016 2017
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
2018 2019 2020

loop_again:
	total_scanned = 0;
2021
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2022
	sc.may_writepage = !laptop_mode;
2023
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2024

2025 2026
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
2027 2028 2029 2030

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2031
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2032

2033 2034 2035 2036
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2037 2038
		all_zones_ok = 1;

2039 2040 2041 2042 2043 2044
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2045

2046 2047
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2048

2049
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2050
				continue;
L
Linus Torvalds 已提交
2051

2052 2053 2054 2055
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2056
			if (inactive_anon_is_low(zone, &sc))
2057 2058 2059
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2060 2061
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2062
				end_zone = i;
A
Andrew Morton 已提交
2063
				break;
L
Linus Torvalds 已提交
2064 2065
			}
		}
A
Andrew Morton 已提交
2066 2067 2068
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2069 2070 2071
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2072
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2086
			int nr_slab;
2087
			int nid, zid;
L
Linus Torvalds 已提交
2088

2089
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2090 2091
				continue;

2092
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2093 2094
				continue;

2095
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
2096
			sc.nr_scanned = 0;
2097
			note_zone_scanning_priority(zone, priority);
2098 2099 2100 2101 2102 2103 2104 2105 2106

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2107 2108 2109 2110
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2111 2112
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2113
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2114
			reclaim_state->reclaimed_slab = 0;
2115 2116
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2117
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2118
			total_scanned += sc.nr_scanned;
2119
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2120
				continue;
2121 2122 2123
			if (nr_slab == 0 &&
			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2124 2125 2126 2127 2128 2129
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2130
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2131
				sc.may_writepage = 1;
2132

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
				if (!zone_watermark_ok(zone, order,
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
			}
2145

L
Linus Torvalds 已提交
2146 2147 2148 2149 2150 2151 2152
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2153 2154 2155 2156 2157 2158
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164 2165

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2166
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2167 2168 2169
			break;
	}
out:
2170 2171 2172 2173 2174
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
2175 2176 2177
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

2178
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
2179 2180 2181
	}
	if (!all_zones_ok) {
		cond_resched();
2182 2183 2184

		try_to_freeze();

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2202 2203 2204
		goto loop_again;
	}

2205
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2206 2207 2208 2209
}

/*
 * The background pageout daemon, started as a kernel thread
2210
 * from the init process.
L
Linus Torvalds 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2230
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2231

2232 2233
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2234
	if (!cpumask_empty(cpumask))
2235
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2250
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2251
	set_freezable();
L
Linus Torvalds 已提交
2252 2253 2254 2255

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2256
		int ret;
2257

L
Linus Torvalds 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2268 2269 2270 2271
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2272
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2283
				if (!sleeping_prematurely(pgdat, order, remaining))
2284 2285 2286
					schedule();
				else {
					if (remaining)
2287
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2288
					else
2289
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2290 2291
				}
			}
2292

L
Linus Torvalds 已提交
2293 2294 2295 2296
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2297 2298 2299 2300 2301 2302 2303 2304 2305
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
		if (!ret)
2306
			balance_pgdat(pgdat, order);
L
Linus Torvalds 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2318
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2319 2320 2321
		return;

	pgdat = zone->zone_pgdat;
2322
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2323 2324 2325
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2326
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2327
		return;
2328
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2329
		return;
2330
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2331 2332
}

2333 2334 2335 2336 2337 2338 2339 2340
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2341
{
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2366 2367
}

2368
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2369
/*
2370
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2371 2372 2373 2374 2375
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2376
 */
2377
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2378
{
2379 2380
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2381 2382 2383
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2384
		.may_writepage = 1,
2385 2386 2387 2388
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
2389
		.isolate_pages = isolate_pages_global,
L
Linus Torvalds 已提交
2390
	};
2391 2392 2393
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2394

2395 2396 2397 2398
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2399

2400
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2401

2402 2403 2404
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2405

2406
	return nr_reclaimed;
L
Linus Torvalds 已提交
2407
}
2408
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2409 2410 2411 2412 2413

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2414
static int __devinit cpu_callback(struct notifier_block *nfb,
2415
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2416
{
2417
	int nid;
L
Linus Torvalds 已提交
2418

2419
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2420
		for_each_node_state(nid, N_HIGH_MEMORY) {
2421
			pg_data_t *pgdat = NODE_DATA(nid);
2422 2423 2424
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2425

2426
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2427
				/* One of our CPUs online: restore mask */
2428
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2429 2430 2431 2432 2433
		}
	}
	return NOTIFY_OK;
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2467 2468
static int __init kswapd_init(void)
{
2469
	int nid;
2470

L
Linus Torvalds 已提交
2471
	swap_setup();
2472
	for_each_node_state(nid, N_HIGH_MEMORY)
2473
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2474 2475 2476 2477 2478
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2489
#define RECLAIM_OFF 0
2490
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2491 2492 2493
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2494 2495 2496 2497 2498 2499 2500
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2501 2502 2503 2504 2505 2506
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2507 2508 2509 2510 2511 2512
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2555 2556 2557
/*
 * Try to free up some pages from this zone through reclaim.
 */
2558
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2559
{
2560
	/* Minimum pages needed in order to stay on node */
2561
	const unsigned long nr_pages = 1 << order;
2562 2563
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2564
	int priority;
2565 2566
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2567
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2568
		.may_swap = 1,
2569 2570
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2571
		.gfp_mask = gfp_mask,
2572
		.swappiness = vm_swappiness,
2573
		.order = order,
2574
		.isolate_pages = isolate_pages_global,
2575
	};
2576
	unsigned long slab_reclaimable;
2577 2578 2579

	disable_swap_token();
	cond_resched();
2580 2581 2582 2583 2584 2585
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2586
	lockdep_set_current_reclaim_state(gfp_mask);
2587 2588
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2589

2590
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2591 2592 2593 2594 2595 2596
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2597
			note_zone_scanning_priority(zone, priority);
2598
			shrink_zone(priority, zone, &sc);
2599
			priority--;
2600
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2601
	}
2602

2603 2604
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2605
		/*
2606
		 * shrink_slab() does not currently allow us to determine how
2607 2608 2609 2610
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2611
		 *
2612 2613
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2614
		 */
2615
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2616 2617
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2618
			;
2619 2620 2621 2622 2623

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2624
		sc.nr_reclaimed += slab_reclaimable -
2625
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2626 2627
	}

2628
	p->reclaim_state = NULL;
2629
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2630
	lockdep_clear_current_reclaim_state();
2631
	return sc.nr_reclaimed >= nr_pages;
2632
}
2633 2634 2635 2636

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2637
	int ret;
2638 2639

	/*
2640 2641
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2642
	 *
2643 2644 2645 2646 2647
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2648
	 */
2649 2650
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2651
		return ZONE_RECLAIM_FULL;
2652

2653
	if (zone->all_unreclaimable)
2654
		return ZONE_RECLAIM_FULL;
2655

2656
	/*
2657
	 * Do not scan if the allocation should not be delayed.
2658
	 */
2659
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2660
		return ZONE_RECLAIM_NOSCAN;
2661 2662 2663 2664 2665 2666 2667

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2668
	node_id = zone_to_nid(zone);
2669
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2670
		return ZONE_RECLAIM_NOSCAN;
2671 2672

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2673 2674
		return ZONE_RECLAIM_NOSCAN;

2675 2676 2677
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2678 2679 2680
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2681
	return ret;
2682
}
2683
#endif
L
Lee Schermerhorn 已提交
2684 2685 2686 2687 2688 2689 2690

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2691 2692
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2693 2694
 *
 * Reasons page might not be evictable:
2695
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2696
 * (2) page is part of an mlocked VMA
2697
 *
L
Lee Schermerhorn 已提交
2698 2699 2700 2701
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2702 2703 2704
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2705 2706
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2707 2708 2709

	return 1;
}
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2729
		enum lru_list l = page_lru_base_type(page);
2730

2731 2732
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2733
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2734 2735 2736 2737 2738 2739 2740 2741
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2742
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2814
static void scan_zone_unevictable_pages(struct zone *zone)
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2856
static void scan_all_zones_unevictable_pages(void)
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2872
			   void __user *buffer,
2873 2874
			   size_t *length, loff_t *ppos)
{
2875
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}